Skip to main content
Log in

β-Arrestin 1 Modulates Functions of Autoimmune T Cells from Primary Biliary Cirrhosis Patients

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Objectives

Primary biliary cirrhosis (PBC) is an autoimmune disease, characterized by antimitochondrial antibodies and autoreactive T cells causing destruction of the primary bile ducts. The molecular mechanisms regulating the autoreactive T cells remain elusive. β-Arrestins (βarr) are multifunctional signaling molecules that are crucial to T cell survival. We hypothesized that βarr plays a critical regulatory function in the autoreactive T cells of PBC patients.

Methods

Patients with hepatic biliary cirrhosis (n = 60) were evaluated. Cytokine expression, T cell proliferation, and transcription factors were evaluated to assess regulatory functions in autoreactive T cells from the patient.

Results

Our studies showed that expression of βarr1 was elevated significantly in T lymphocytes from patients with PBC. Moreover, the level of βarr1 mRNA positively correlated with Mayo risk score in PBC patients. Based on modulation of βarr in autoreactive T cell lines, overexpression of βarr1 increased T cell proliferation, augmented interferon production, downregulated activities of nuclear factor κB and AP-1, promoted acetylation of histone H4 in the promoter regions of CD40L, LIGHT, IL-17 and interferon-γ, while downregulating acetylation of histone H4 in the promoter regions of TRAIL, Apo2, and HDAC7A, thereby regulating expression of these genes.

Conclusions

Our findings suggest that βarr1 contributes to the pathogenesis of PBC, having significant implications for novel therapy strategy, further providing information for investigating the mechanisms of autoimmune disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

βarr 1:

β-arrestin 1

CHiP:

chromatin immunoprecipitation

IFN:

interferon

NF-κB:

nuclear factor κB

PBC:

primary biliary cirrhosis

PBMC:

peripheral blood mononuclear cells

TBIL:

total bilirubin

TC:

total cholesterol

References

  1. Murtaugh PA, Dickson ER, Van Dam GM, Malinchoc M, Grambsch PM, Langworthy AL, et al. Primary biliary cirrhosis: prediction of short-term survival based on repeated patient visits. Hepatology. 1994;20:126–34.

    Article  PubMed  CAS  Google Scholar 

  2. Prince M, Chetwynd A, Newman W, Metcalf JV, James OF. Survival and symptom progression in a geographically based cohort of patients with primary biliary cirrhosis: follow-up for up to 28 years. Gastroenterology. 2002;123:1044–51.

    Article  PubMed  Google Scholar 

  3. Ichiki Y, Shimoda S, Ishibashi H, Gershwin ME. Is primary biliary cirrhosis a model autoimmune disease? Autoimmun Rev. 2004;3:331–6.

    Article  PubMed  Google Scholar 

  4. Shimoda S, Van de Water J, Ansari A, Nakamura M, Ishibashi H, Coppel RL, et al. Identification and precursor frequency analysis of a common T cell epitope motif in mitochondrial autoantigens in primary biliary cirrhosis. J Clin Invest. 1998;102:1831–40.

    Article  PubMed  CAS  Google Scholar 

  5. Lleo A, Invernizzi P, Mackay IR, Prince H, Zhong RQ, Gershwin ME. Etiopathogenesis of primary biliary cirrhosis. World J Gastroenterol. 2008;14:3328–37.

    Article  PubMed  CAS  Google Scholar 

  6. Shimoda S, Miyakawa H, Nakamura M, Ishibashi H, Kikuchi K, Kita H, et al. CD4 T-cell autoreactivity to the mitochondrial autoantigen PDC-E2 in AMA-negative primary biliary cirrhosis. J Autoimmun. 2008;31:110–5.

    Article  PubMed  CAS  Google Scholar 

  7. Liu HY, Deng AM, Zhou Y, Yao DK, Xu DX, Zhong RQ. Analysis of HLA alleles polymorphism in Chinese patients with primary biliary cirrhosis. Hepatobiliary Pancreat Dis Int. 2006;5:129–32.

    PubMed  CAS  Google Scholar 

  8. Sakaki M, Hiroishi K, Baba T, Ito T, Hirayama Y, Saito K, et al. Intrahepatic status of regulatory T cells in autoimmune liver diseases and chronic viral hepatitis. Hepatol Res. 2008;38:354–61.

    Article  PubMed  CAS  Google Scholar 

  9. Giorelli M, Livrea P, Defazio G, Iacovelli L, Capobianco L, Picascia A, et al. Interferon beta-1a counteracts effects of activation on the expression of G-protein-coupled receptor kinases 2 and 3, beta-arrestin-1, and regulators of G-protein signalling 2 and 16 in human mononuclear leukocytes. Cell Signal. 2002;14:673–8.

    Article  PubMed  CAS  Google Scholar 

  10. Kang J, Shi Y, Xiang B, Qu B, Su W, Zhu M, et al. A nuclear function of beta-arrestin1 in GPCR signaling: regulation of histone acetylation and gene transcription. Cell. 2005;123:833–47.

    Article  PubMed  CAS  Google Scholar 

  11. Bjorgo E, Tasken K. Role of cAMP phosphodiesterase 4 in regulation of T-cell function. Crit Rev Immunol. 2006;26:443–51.

    PubMed  Google Scholar 

  12. Fan H, Luttrell LM, Tempel GE, Senn JJ, Halushka PV, Cook JA. Beta-arrestins 1 and 2 differentially regulate LPS-induced signaling and pro-inflammatory gene expression. Mol Immunol. 2007;44:3092–9.

    Article  PubMed  CAS  Google Scholar 

  13. Shi Y, Feng Y, Kang J, Liu C, Li Z, Li D, et al. Critical regulation of CD4+ T cell survival and autoimmunity by beta-arrestin 1. Nat Immunol. 2007;8:817–24.

    Article  PubMed  CAS  Google Scholar 

  14. Frederick TJ, Miller SD. Arresting autoimmunity by blocking beta-arrestin 1. Nat Immunol. 2007;8:791–2.

    Article  PubMed  CAS  Google Scholar 

  15. Heathcote EJ. Management of primary biliary cirrhosis. The American Association for the Study of Liver Diseases practice guidelines. Hepatology. 2000;31:1005–13.

    Article  PubMed  CAS  Google Scholar 

  16. Bakker AB, Marland G, de Boer AJ, Huijbens RJ, Danen EH, Adema GJ, et al. Generation of antimelanoma cytotoxic T lymphocytes from healthy donors after presentation of melanoma-associated antigen-derived epitopes by dendritic cells in vitro. Cancer Res. 1995;55:5330–4.

    PubMed  CAS  Google Scholar 

  17. Parruti G, Peracchia F, Sallese M, Ambrosini G, Masini M, Rotilio D, et al. Molecular analysis of human beta-arrestin-1: cloning, tissue distribution, and regulation of expression. Identification of two isoforms generated by alternative splicing. J Biol Chem. 1993;268:9753–61.

    PubMed  CAS  Google Scholar 

  18. Sun Y, Cheng Z, Ma L, Pei G. beta-Arrestin2 is critically involved in CXCR4-mediated chemotaxis, and this is mediated by its enhancement of p38 MAPK activation. J Biol Chem. 2002;277:49212–9.

    Article  PubMed  CAS  Google Scholar 

  19. Wang P, Gao H, Ni Y, Wang B, Wu Y, Ji L, et al. beta-Arrestin 2 functions as a G-protein-coupled receptor-activated regulator of oncoprotein Mdm2. J Biol Chem. 2003;278:6363–70.

    Article  PubMed  CAS  Google Scholar 

  20. Wang P, Wu Y, Ge X, Ma L, Pei G. Subcellular localization of beta-arrestins is determined by their intact N domain and the nuclear export signal at the C terminus. J Biol Chem. 2003;278:11648–53.

    Article  PubMed  CAS  Google Scholar 

  21. Wang Y, Tang Y, Teng L, Wu Y, Zhao X, Pei G. Association of beta-arrestin and TRAF6 negatively regulates Toll-like receptor-interleukin 1 receptor signaling. Nat Immunol. 2006;7:139–47.

    Article  PubMed  CAS  Google Scholar 

  22. Nishio A, Keeffe EB, Gershwin ME. Immunopathogenesis of primary biliary cirrhosis. Semin Liver Dis. 2002;22:291–302.

    Article  PubMed  CAS  Google Scholar 

  23. Abrahamsen H, Baillie G, Ngai J, Vang T, Nika K, Ruppelt A, et al. TCR- and CD28-mediated recruitment of phosphodiesterase 4 to lipid rafts potentiates TCR signaling. J Immunol. 2004;173:4847–58.

    PubMed  CAS  Google Scholar 

  24. Singh NJ, Schwartz RH. Primer: mechanisms of immunologic tolerance. Nat Clin Pract Rheumatol. 2006;2:44–52.

    Article  PubMed  CAS  Google Scholar 

  25. Gutcher I, Becher B. APC-derived cytokines and T cell polarization in autoimmune inflammation. J Clin Invest. 2007;117:1119–27.

    Article  PubMed  CAS  Google Scholar 

  26. Karamboulas C, Swedani A, Ward C, Al-Madhoun AS, Wilton S, Boisvenue S, et al. HDAC activity regulates entry of mesoderm cells into the cardiac muscle lineage. J Cell Sci. 2006;119:4305–14.

    Article  PubMed  CAS  Google Scholar 

  27. Schaefer U, Voloshanenko O, Willen D, Walczak H. TRAIL: a multifunctional cytokine. Front Biosci. 2007;12:3813–24.

    Article  PubMed  CAS  Google Scholar 

  28. Stockinger B, Veldhoen M. Differentiation and function of Th17 T cells. Curr Opin Immunol. 2007;19:281–6.

    Article  PubMed  CAS  Google Scholar 

  29. Tsubata T. B cell abnormality and autoimmune disorders. Autoimmunity. 2005;38:331–7.

    Article  PubMed  CAS  Google Scholar 

  30. Luan B, Zhang Z, Wu Y, Kang J, Pei G. Beta-arrestin2 functions as a phosphorylation-regulated suppressor of UV-induced NF-kappaB activation. EMBO J. 2005;24:4237–46.

    Article  PubMed  CAS  Google Scholar 

  31. Zardo G, Fazi F, Travaglini L, Nervi C. Dynamic and reversibility of heterochromatic gene silencing in human disease. Cell Res. 2005;15:679–90.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Prof. Gang Pei, Dr. Jiuhong Kang, Dr. Chang Liu for suggestive discussion, Dr. Hongyu Yu, Chuanyong Wu, Tingwang Jiang, and Bo Chen for technical assistance. This research was supported by grants from National Science Foundation of China (30772017, 30770997, 30972730, 81072479) and Shanghai Municipal Commission for Science and Technology (08QH14001, 09JC1405400).

Conflict of Interest

The authors claim no conflict of interest that would influence the publication of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong Xia, Sunxiao Chen, Anmei Deng or Renqian Zhong.

Additional information

Zhide Hu, Yuanlan Huang, and Yang Liu contribute equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Table 1

The primer pairs and probes for FQ-PCR of specific gene (DOC 31 kb)

Supplementary Table 2

The primer pairs and probes for FQ-PCR of promoters of specific gene (DOC 31 kb)

Supplemental Figure 1

Representative RT-FQ-PCR curves for βarr1 mRNA from PBMCs of healthy controls (a), HBV-infected patients (b), and PBC participants in comparison to 18S ribosomal RNA (c). (DOC 1261 kb)

Supplemental 2

Modulation of endogenous βarr1 expression in autoreactive T cell clones by transfecting with plasmids carrying human βarr1 cDNA or specific siRNA. βarr1 expression in autoreactive T cell clones transfected with plasmids carrying either human βarr1 cDNA or specific siRNA was analyzed by Western blotting. Results from a representative experiment were shown. Lanes 1 normal CD3+ T cells, 2 PBC CD3+ T cells, 3 autoreactive T cells before transfection, 4 autoreactive T cells transfected with β-arrestin-1 overexpression plasmid, 5 autoreactive T cells transfected with β-arrestin-1 silencing plasmid (DOC 271 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Z., Huang, Y., Liu, Y. et al. β-Arrestin 1 Modulates Functions of Autoimmune T Cells from Primary Biliary Cirrhosis Patients. J Clin Immunol 31, 346–355 (2011). https://doi.org/10.1007/s10875-010-9492-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-010-9492-4

Keywords

Navigation