Skip to main content
Log in

Sphingosine Forms Channels in Membranes That Differ Greatly from Those Formed by Ceramide

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Ceramide channels formed in the outer membrane of mitochondria have been proposed to be the pathways by which proapoptotic proteins are released from mitochondria during the early stages of apoptosis. We report that sphingosine also forms channels in membranes, but these differ greatly from the large oligomeric barrel-stave channels formed by ceramide. Sphingosine channels have short open lifetimes and have diameters less than 2 nm, whereas ceramide channels have long open lifetimes, enlarge in size reaching diameters in excess of 10 nm. Unlike ceramide, sphingosine forms channels in erythrocyte plasma membranes that vary in size with concentration, but with a maximum possible channel diameter of 2 nm. In isolated mitochondria, a large proportion of the added sphingosine was rapidly metabolized to ceramide in the absence of externally added fatty acids or fatty-acyl-CoAs. The ceramide synthase inhibitor, fumonisin B1 failed to prevent sphingosine metabolism to ceramide and actually increased it. However, partial inhibition of conversion to ceramide was achieved in the presence of ceramidase inhibitors, indicating that reverse ceramidase activity is at least partially responsible for sphingosine metabolism to ceramide. A small amount of cytochrome c release was detected. It correlated with the level of ceramide converted from sphingosine. Thus, sphingosine channels, unlike ceramide channels, are not large enough to allow the passage of proapoptotic proteins from the intermembrane space of mitochondria to the cytoplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AIF:

apoptosis inducing factor

MAC:

mitochondrial apoptosis-induced channel

pS:

picoSiemens

nS:

nanoSiemens

DiPyPC:

diphytanoylphosphatidylcholine

FB1:

fumonisin B1

OE:

N-oleylethanolamide

MAPP:

D-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol

BSA:

bovine serum albumin

DNP:

2,4-dinitrophenol

PIPES:

piperazine-N,N′-bis[2-ethanesulfonic acid]

TLC:

thin layer chromatography

C16-ceramide:

N-hexadecyl-D-erythro-sphingosine

PT:

permeability transition

VDAC:

voltage dependent anion-selective channel

References

  • Antonsson, B., Montessuit, S., Lauper, S., Eskes, R., and Martinou, J. C. (2000). Biochem. J. 345, 271–278.

    Article  PubMed  Google Scholar 

  • Antonsson, B., Montessuit, S., Sanchez, B., and Martinou, J. C. (2001). J. Biol. Chem. 276, 11615–11623.

    Article  PubMed  Google Scholar 

  • Basañez, G., Nechushtan, A., Drozhinin, O., Chanturiya, A., Choe, E., Tutt, S., Wood, K. A., Hsu, Y.-T., Zimmerburg, J., and Youle, R. J. (1999). Proc. Natl. Acad. Sci. U.S.A. 96, 5492–5497.

    Article  PubMed  Google Scholar 

  • Bionda, C., Portoukalian, J., Schmitt, D., Rodriguez-Lafrasse, C., and Ardail, D. (2004). Biochem. J. 382, 527–533.

    PubMed  Google Scholar 

  • Bligh, E. A., and Dyer, W. J. (1959). Can. J. Biochem. Physiol. 37, 911–917.

    PubMed  Google Scholar 

  • Bose, R., Verheij, M., Haimovitz-Friedman, A., Scotto, K., Fuks, Z., and Kolesnick, R. N. (1995). Cell 82, 405–414.

    Article  PubMed  Google Scholar 

  • Chai, J., Shiozaki, E., Srinivasula, S. M., Wu, Q., Datta, P., Alnemri, E. S., Shi, Y., and Dataa, P. (2001). Cell 104, 769–780.

    Article  PubMed  Google Scholar 

  • Charles, A. G., Han, T. Y., Liu, Y. Y., Hansen, N., Giuliano, A. E., and Cabot, M. C. (2001). Cancer Chemother. Pharmacol. 47, 444–450.

    Article  PubMed  Google Scholar 

  • Colombini, M. (1987). Methods Enzymol. 148, 465–475.

    PubMed  Google Scholar 

  • Crompton, M. (1999). Biochem. J. 342, 233–249.

    Article  Google Scholar 

  • Cuvillier, O. (2002). Biochim. Biophys. Acta 1585, 153–162.

    PubMed  Google Scholar 

  • Cuvillier, O., Edsall, R. L., and Spiegel, S. (2000). J. Biol. Chem. 275, 15691–15700.

    Article  PubMed  Google Scholar 

  • Cuvillier, O., Nava, V. E., Murthy, S. K., Edsall, L. C., Levade, T., Milstien, S., and Spiegel, S. (2001). Cell Death Differ. 8, 162–171.

    Article  PubMed  Google Scholar 

  • Dickerson, R. E., Takano, T., Eisenberg, D., Kallai, O. B., Samson, L., Cooper, A., and Margoliash, E. (1971). J. Biol. Chem. 246, 1511.

    PubMed  Google Scholar 

  • El Bawab, S., Roddy, P., Qian, T., Bielawska, A., Lemasters, J. J., and Hannun, Y. A. (2000). J. Biol. Chem. 275, 21508–21513.

    Article  PubMed  Google Scholar 

  • Geley, S., Hartmann, B. L., and Kofler, R. (1997). FEBS Lett. 400, 15–18.

    Article  PubMed  Google Scholar 

  • Ghafourifar, P., Klein, S. D., Schucht, O., Schenk, U., Pruschy, M., Rocha, S., and Richter, C. (1999). J. Biol. Chem. 274, 6080–6084.

    Article  PubMed  Google Scholar 

  • Gottschalk, A., Boise, L., Thompson, C., and Quintáns, J. (1994). Proc. Natl. Acad. Sci. U.S.A. 91, 7350–7354.

    PubMed  Google Scholar 

  • Hung, W.-C., Chang, H.-C., and Chuang, L.-Y. (1999). Biochem. J. 338, 161–166.

    Article  PubMed  Google Scholar 

  • Igisu, H., Hamasaki, N., Ito, A., and Ou, W. (1988). Lipids. 23, 345–348.

    PubMed  Google Scholar 

  • Jarvis, W. D., Fornari, F. A. Jr., Traylor, R. S., Martin, H. A., Kramer, L. B., Erukulla, R. K., Bittman, R., and Grant, S. (1996). J. Biol. Chem. 271, 8275–8284.

    Article  PubMed  Google Scholar 

  • Kroesen, B.-J., Pettus, B., Luberto, C., Busman, M., Sietsma, H., Leij, L. D., and Hannun, Y. A. (2001). J. Biol. Chem. 276, 13606–13614.

    PubMed  Google Scholar 

  • Kuga, S. (1981). J. Chromatogr. 206, 449–461.

    Article  Google Scholar 

  • Kuwana, T., Mackey, M. R., Perkins, G., Ellisman, M. H., Latterich, M., Schneiter, R., Green, D. R., and Newmeyer, D. D. (2002). Cell 111, 331–342.

    Article  PubMed  Google Scholar 

  • Mate, M. J., Ortiz-Lombardia, M., Boitel, B., Haouz, A., Tello, D., Susin, S. A., Penninger, J., Kroemer, G., and Alzari, P. M. (2002). Nat. Struct. Biol. 9, 442–446.

    Article  PubMed  Google Scholar 

  • Montal, M., and Mueller, P. (1972). Proc. Natl. Acad. Sci. U.S.A. 69, 3561–3566.

    PubMed  Google Scholar 

  • Nava, V. E., Cuvillier, O., Edsall, L. C., Kimura, K., Milstien, S., Gelmann, E. P., and Spiegel, S. (2000). Cancer Res. 60, 4468–4474.

    PubMed  Google Scholar 

  • Ohta, H., Sweeney, E. A., Masamune, A., Yatomi, Y., Hakomori, S., andIgarashi, Y. (1995). Cancer Res. 55, 691–697.

    PubMed  Google Scholar 

  • Okino, N., He, X., Gatt, S., Sandhoff, K., Ito, M., and Schuchman, E. H. (2003). J. Biol. Chem. 278, 29948–29953.

    Article  PubMed  Google Scholar 

  • Pavlov, E. V., Priault, M., Pietkiewicz, D., Cheng, E. H.-Y., Antonsson, B., Manon, S., Korsmeyer, S. J., Mannella, C. A., and Kinnally, K. W. (2001). J. Cell Biol. 155, 725–731.

    Article  PubMed  Google Scholar 

  • Perry, D. K., Carton, J., Shah, A. K., Meredith, F., Uhlinger, D. J., and Hannun, Y. A. (2000). J. Biol. Chem. 275, 9078–9084.

    Article  PubMed  Google Scholar 

  • Raisova, M., Bektas, M., Wieder, T., Daniel, P., Eberle, P., Orfanos, C. E., and Geilen, C. C. (2000). FEBS Lett. 473, 27–32.

    Article  PubMed  Google Scholar 

  • Riebeling, C., Allegood, J. C., Wang, E., Merrill, A. H. Jr., and Futerman, A. H. (2003). J. Biol. Chem. 278, 43452–43459.

    Article  PubMed  Google Scholar 

  • Rodriguez-Lafrasse, C., Alphonse, G., Broquet, P., Aloy, M., Louisot, P., and Rousson, R. (2001). Biochem. J. 357, 407–416.

    Article  PubMed  Google Scholar 

  • Rostovtseva, T. K., Antonsson, B., Suzuki, M., Youle, R. J., Colombini, M., and Bezrukov, S. M. (2004). J. Biol. Chem. 279, 13575–13583.

    Article  PubMed  Google Scholar 

  • Saelens, X., Festjens, N., Walle, L. V., van Gurp, M., van Loo, G., and Vandenabeele, P. (2004). Oncogene 23, 2861–2874.

    Article  PubMed  Google Scholar 

  • Saito, M., Korsmeyer, S. J., and Schlesinger, P. H. (2000). Nat. Cell Biol. 2, 553–555.

    Article  PubMed  Google Scholar 

  • Schafer, P., Scholz, S. R., Gimadutdinow, O., Cymerman, I. A., Bujnicki, J. M., Ruiz-Carrillo, A., Pingoud, A., and Meiss, G. (2004). J. Mol. Biol. 338, 217–228.

    Article  PubMed  Google Scholar 

  • Schultz, S. G., and Solomon, A. K. (1961). J. Gen. Physiol. 44, 1189–1199.

    Article  PubMed  Google Scholar 

  • Siskind, L. J., and Colombini, M. (2000). J. Biol. Chem. 275, 38640–38644.

    Article  PubMed  Google Scholar 

  • Siskind, L. J., Davoody, A., Lewin, N., Marshall, S., and Colombini, M. (2003). Biophys. J. 85, 1560–1575.

    PubMed  Google Scholar 

  • Siskind, L. J., Kolesnick, R. N., and Colombini, M. (2002). J. Biol. Chem. 277, 26796–26803.

    Article  PubMed  Google Scholar 

  • Susin, S. A., Zamzami, N., and Kroemer, G. (1998). Biochim. Biophys. Acta 1366, 151–165.

    PubMed  Google Scholar 

  • Sweeney, E. A., Inokuchi, J., and Igarashi, Y. (1998). FEBS 425, 61–65.

    Article  Google Scholar 

  • Tejuca, M., Dalla Serra, M., Potrich, C., Alvarez, C., and Menestrina, G. (2001). J. Membr. Biol. 183, 125–135.

    Article  PubMed  Google Scholar 

  • Terrones, O., Antonsson, B., Yamaguchi, H., Wang, H.-G., Liu, J., Lee, R. M., Herrmann, A., and Basañez, G. (2004). J. Biol. Chem. 279, 30081–30091.

    Article  PubMed  Google Scholar 

  • Thomas, R. L. Jr., Matsko, C. M., Lotze, M. T., and Amoscato, A. A. (1999). J. Biol. Chem. 274, 30580–30588.

    Article  PubMed  Google Scholar 

  • Vander Heiden, M. G., Li, X. X., Gottleib, E., Hill, R. B., Thompson, C. B., and Colombini, M. (2001). J. Biol. Chem. 276, 19414–19419.

    Article  PubMed  Google Scholar 

  • Venkataraman, K., Riebeling, C., Bodennec, J., Riezman, H., Allegood, J. C., Sullards, M. C., Merrill, A. H. Jr., and Futerman, A. H. (2002). J. Biol. Chem. 277, 35642–35649.

    Article  PubMed  Google Scholar 

  • Wiesner, D. A., Kilkus, J. P., Gottscalk, A. R., Quintáns, J., and Dawson, G. (1997). J. Biol. Chem. 272, 9868–9876.

    Article  PubMed  Google Scholar 

  • Witty, J. P., Bridgham, J. T., and Johnson, A. L. (1996). Endocrinology 137, 5269–5277.

    Article  PubMed  Google Scholar 

  • Zhang, J., Alter, N., Reed, J. C., Borner, C., Obeid, L. M., and Hannun, Y. A. (1996). Proc. Natl. Acad. Sci. U.S.A. 93, 5325–5328.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Colombini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siskind, L.J., Fluss, S., Bui, M. et al. Sphingosine Forms Channels in Membranes That Differ Greatly from Those Formed by Ceramide. J Bioenerg Biomembr 37, 227–236 (2005). https://doi.org/10.1007/s10863-005-6632-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-005-6632-2

Keywords

Navigation