Skip to main content

Advertisement

Log in

The pH-controlled nanoparticles size of polydopamine for anti-cancer drug delivery

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A facile method was used to prepare polydopamine (PDA) nanoparticles. The effect of the initial pH of the dopamine solution on the formation kinetics, chemical structure, and biocompatibility of PDA nanoparticles was evaluated. Additionally, camptothecin (CPT) was chosen as a model anti-cancer drug with which to evaluate the efficiency of drug loading and release behavior of PDA nanoparticles. The results indicated that the size and yield of PDA nanoparticles, consisting of quinoid and indoline species, were closely related to the pH value of the precursor solution. At a reaction time of 6 h, the uniform particle sizes of PDA nanoparticles were ~400, 250, 150, and 75 nm in solutions with initial pH values of 7.5, 8, 8.5, and 9, respectively, and with corresponding yields of 3, 7, 20, and 34 %. The amounts of CPT loaded in 1 mg of PDA nanoparticles synthesized at pH values of 7.5, 8, 8.5, and 9 for 6 h were 10.85, 11.81, 10.17, and 6.19 μg, respectively. After the first day, 19, 20, 25, and 36 % of the CPT was released from PDA nanoparticles synthesized at pH values of 7.5, 8, 8.5, and 9, respectively, depending on the particle size. The PDA nanoparticles had excellent haemocompatibility: there was no apparent hemolysis, and they did not cause acute toxicity in A549 and HeLa cells. The loading of CPT into PDA nanoparticles significantly reduced the viability of A549 and HeLa cells, comparable to free CPT. It can be concluded that the PDA nanoparticles prepared by our facile method are potential carriers of anticancer drugs for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Thoenen H, Angeletti PU, Levi-Montalcini R, Kettler R. Selective induction by nerve growth factor of tyrosine hydroxylase and dopamine-β-hydroxylase in the rat superior cervical ganglia. Proc Natl Acad Sci USA. 1971;68:1598–602.

    Article  CAS  Google Scholar 

  2. Medintz IL, Stewart MH, Trammell SA, Susumu K, Delehanty JB, Mei BC, et al. Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing. Nat Mater. 2010;9:676–84.

    Article  CAS  Google Scholar 

  3. Yamada K, Chen T, Kumar G, Vesnovsky O, Topoleski LD, Payne GF. Chitosan based water-resistant adhesive. Analogy to mussel glue. Biomacromolecules. 2000;1:252–8.

    Article  CAS  Google Scholar 

  4. Lee H, Lee K, Kim IK, Park TG. Fluorescent gold nanoprobe sensitive to intracellular reactive oxygen species. Adv Funct Mater. 2009;19:1884–90.

    Article  CAS  Google Scholar 

  5. Xu C, Xu K, Gu H, Zheng R, Liu H, Zhang X, et al. Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. J Am Chem Soc. 2004;126:9938–9.

    Article  CAS  Google Scholar 

  6. Zürcher S, Wäckerlin D, Bethuel Y, Malisova B, Textor M, Tosatti S, et al. Biomimetic surface modifications based on the cyanobacterial iron chelator anachelin. J Am Chem Soc. 2006;128:1064–5.

    Article  Google Scholar 

  7. Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science. 2007;318:426–30.

    Article  CAS  Google Scholar 

  8. Fei B, Qian BT, Yang ZY, Wang RH, Liu WC, Mak CL, et al. Coating carbon nanotubes by spontaneous oxidative polymerization of dopamine. Carbon. 2008;46:1795–7.

    Article  CAS  Google Scholar 

  9. Ku SH, Park CB. Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering. Biomaterials. 2010;31:9431–7.

    Article  CAS  Google Scholar 

  10. Zhou WH, Lu CH, Guo XC, Chen FR, Yang HH, Wang XR. Mussel-inspired molecularly imprinted polymer coating superparamagnetic nanoparticles for protein recognition. J Mater Chem. 2010;20:880–3.

    Article  CAS  Google Scholar 

  11. Postma A, Yan Y, Wang Y, Zelikin AN, Tjipto E, Caruso F. Self-Polymerization of dopamine as a versatile and robust technique to prepare polymer capsules. Chem Mater. 2009;21:3042–4.

    Article  CAS  Google Scholar 

  12. Cui J, Wang Y, Postma A, Hao J, Hosta-Rigau L, Caruso F. Monodisperse polymer capsules: tailoring size, shell thickness, and hydrophobic cargo loading via emulsion templating. Adv Func Mater. 2010;20:1625–31.

    Article  CAS  Google Scholar 

  13. Ochs CJ, Hong Tam, Such GK, Cui J, Postma A, Caruso F. Dopamine-mediated continuous assembly of biodegradable capsules. Chem Mater. 2011;23:3141–3.

    Article  CAS  Google Scholar 

  14. Cui J, Yan Y, Such GK, Liang K, Ochs CJ, Postma A, et al. Immobilization and intracellular delivery of an anticancer drug using mussel-inspired polydopamine capsules. Biomacromolecules. 2012;13:2225–8.

    Article  CAS  Google Scholar 

  15. Yu B, Wang DA, Ye Q, Zhou F, Liu W. Robust polydopamine nano/microcapsules and their loading and release behavior. Chem Commun. 2009;45:6789–91.

    Article  Google Scholar 

  16. Liu Q, Yu B, Ye W, Zhou F. Highly selective uptake and release of charged molecules by pH-responsive polydopamine microcapsules. Macromol Biosci. 2011;11:1227–34.

    Article  CAS  Google Scholar 

  17. Chithrani BD, Ghazani AA, Chan WC. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006;6:662–8.

    Article  CAS  Google Scholar 

  18. Kim S, Oh WK, Jeong YS, Hong JY, Cho BR, Hahn JS, et al. Cytotoxicity of, and innate immune response to, size-controlled polypyrrole nanoparticles in mammalian cells. Biomaterials. 2011;32:2342–50.

    Article  CAS  Google Scholar 

  19. Ju KY, Lee Y, Lee S, Park SB, Lee JK. Bioinspired polymerization of dopamine to generate melanin-like nanoparticles having an excellent free-radical-scavenging property. Biomacromolecules. 2011;12:625–32.

    Article  CAS  Google Scholar 

  20. Mi Z, Burke TG. Differential interactions of camptothecin lactone and carboxylate forms with human blood components. Biochemistry. 1994;33:10325–36.

    Article  CAS  Google Scholar 

  21. Lin YS, Haynes CL. Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. J Am Chem Soc. 2010;132:4834–42.

    Article  CAS  Google Scholar 

  22. Bisaglia M, Mammi S, Bubacco L. Kinetic and structural analysis of the early oxidation products of dopamine: analysis of the interactions with alpha-synuclein. J Biol Chem. 2007;282:15597–605.

    Article  CAS  Google Scholar 

  23. Dreyer DR, Miller DJ, Freeman BD, Paul DR, Bielawski CW. Elucidating the structure of poly(dopamine). Langmuir. 2012;28:6428–35.

    Article  CAS  Google Scholar 

  24. Yu F, Chen S, Chen Y, Li H, Yang L, Chen Y, et al. Experimental and theoretical analysis of polymerization reaction process on the polydopamine membranes and its corrosion protection properties for 304 Stainless Steel. J Mol Struct. 2010;982:152–61.

    Article  CAS  Google Scholar 

  25. Zhou Z, Wang Q, Lin J, Chen Y, Yang C. Nucleophilic addition-triggered lanthanide luminescence allows detection of amines by Eu(thenoyltrifluoroacetone)3. Photochem Photobiol. 2012;86:840–3.

    Article  Google Scholar 

  26. Peter MG, Förster H. On the structure of eumelanins: identification of constitutional patterns by solid-state NMR spectroscopy. Angew Chem Int Ed. 1989;28:741–3.

    Article  Google Scholar 

  27. Lu J, Liong M, Zink JI, Tamanoi F. Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer. Small. 2007;3:1341–6.

    Article  CAS  Google Scholar 

  28. Zhu A, Yuan L, Jin W, Dai S, Wang Q, Xue Z, et al. Polysaccharide surface modified Fe3O4 nanoparticles for camptothecin loading and release. Acta Biomater. 2009;5:1489–98.

    Article  CAS  Google Scholar 

  29. Shi J, Hedberg Y, Lundin M, Odnevall Wallinder I, Karlsson HL, Möller L. Hemolytic properties of synthetic nano- and porous silica particles: the effect of surface properties and the protection by the plasma corona. Acta Biomater. 2012;8:3478–90.

    Article  CAS  Google Scholar 

  30. Jin Y, Li T, Ping A, Miao L, Hou X. Self-assembled drug delivery systems. 1. Properties and in vitro/in vivo behavior of acyclovir self-assembled nanoparticles (SAN). Int J Pharmaceut. 2006;309:199–207.

    Article  CAS  Google Scholar 

  31. Jiang HL, Kim YK, Arote R, Nah JW, Cho MH, Choi YJ, et al. Chitosan-graft-polyethylenimine as a gene carrier. J Control Release. 2007;117:273–80.

    Article  CAS  Google Scholar 

  32. Nangia S, Sureshkumar R. Effects of nanoparticle charge and shape anisotropy on translocation through cell membranes. Langmuir. 2012;28:17666–71.

    Article  CAS  Google Scholar 

  33. Huang M, Gao H, Chen Y, Zhu H, Cai Y, Zhang X, et al. Chimmitecan, a novel 9-substituted camptothecin, with improved anticancer pharmacologic profiles in vitro and in vivo. Clin Cancer Res. 2007;13:1298–307.

    Article  CAS  Google Scholar 

  34. Sengupta S, Eavarone D, Capila I, Zhao G, Watson N, Kiziltepe T, et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature. 2005;436:568–72.

    Article  CAS  Google Scholar 

  35. Chen David CH, Chen CC, Shie MY, Huang CH, Ding SJ. Controlled release of gentamicin from calcium phosphate/alginate bone cement. Mater Sci Eng C. 2011;31:334–41.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinn-Jyh Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ho, CC., Ding, SJ. The pH-controlled nanoparticles size of polydopamine for anti-cancer drug delivery. J Mater Sci: Mater Med 24, 2381–2390 (2013). https://doi.org/10.1007/s10856-013-4994-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4994-2

Keywords

Navigation