Skip to main content

Advertisement

Log in

Transferrin-conjugated, fluorescein-loaded magnetic nanoparticles for targeted delivery across the blood–brain barrier

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The blood–brain barrier (BBB) restricts the delivery of many potentially important therapeutic agents for the treatment of brain disorders. An efficient strategy for brain targeted delivery is the utilization of the targeting ligand conjugated nanoparticles to trigger the receptor-mediated transcytosis. In this study, transferrin (Tf) was employed as a brain targeting ligand to functionalize the fluorescein-loaded magnetic nanoparticles (FMNs). The Tf conjugated FMNs (Tf-FMNs) were characterized by transmission electron microscopy, thermal gravimetric analysis, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Using fluorescein as an optical probe, the potential of Tf-FMNs as brain targeting drug carriers was explored in vivo. It was demonstrated that Tf-FMNs were able to cross the intact BBB, diffuse into brain neurons, and distribute in the cytoplasm, dendrites, axons, and synapses of neurons. In contrast, magnetic nanoparticles without Tf conjugation cannot cross the BBB efficiently under the same conditions. Therefore, Tf-FMNs hold great potential in serving as an efficient multifunctional platform for the brain-targeted theranostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chomoucka J, Drbohlavova J, Huska D, Adam V, Kizek R, Hubalek J. Magnetic nanoparticles and targeted drug delivering. Pharmacol Res. 2010;62:144–9.

    Article  CAS  Google Scholar 

  2. Kumar A, Jena PK, Behera S, Lockey RF, Mohapatra S, Mohapatra S. Multifunctional magnetic nanoparticles for targeted delivery. Nanomed Nanotechnol Biol Med. 2010;6:64–9.

    Article  CAS  Google Scholar 

  3. Pardridge WM. Blood-brain barrier delivery. Drug Discov Today. 2007;12:54–61.

    Article  CAS  Google Scholar 

  4. Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood–brain barrier. Neurobiol Dis. 2009;37:13–25.

    Article  Google Scholar 

  5. Li HY, Qian ZM. Transferrin/transferrin receptor-mediated drug delivery. Med Res Rev. 2002;22:225–50.

    Article  CAS  Google Scholar 

  6. Visser CC, Stevanovic S, Voorwinden LH, Gaillard PJ, Crommelin DJA, Danhof M, de Boer AG. Validation of the transferrin receptor for drug targeting to brain capillary endothelial cells in vitro. J Drug Target. 2004;12:145–50.

    Article  CAS  Google Scholar 

  7. Veiseh O, Sun C, Fang C, Bhattarai N, Gunn J, Kievit F, Du K, Pullar B, Lee D, Ellenbogen RG, Olson J, Zhang MQ. Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood–brain barrier. Cancer Res. 2009;69:6200–7.

    Article  CAS  Google Scholar 

  8. Lu CW, Hung Y, Hsiao JK, Yao M, Chung TH, Lin YS, Wu SH, Hsu SC, Liu HM, Mou CY, Yang CS, Huang DM, Chen YC. Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling. Nano Lett. 2007;7:149–54.

    Article  CAS  Google Scholar 

  9. Lopez–Lopez MT, Duran JDG, Delgado A, Gonzalez-Caballero F. Stability and magnetic characterization of oleate-covered magnetite ferrofluids in different nonpolar carriers. J Colloid Interface Sci. 2005;291:144–51.

    Article  Google Scholar 

  10. Tsai CP, Chen CY, Hung Y, Chang FH, Mou CY. Monoclonal antibody-functionalized mesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells. J Mater Chem. 2009;19:5737–43.

    Article  CAS  Google Scholar 

  11. Santra S, Yang H, Stanley JT, Holloway PH, Moudgil BM, Walter G, Mericle RA. Rapid and effective labeling of brain tissue using TAT-conjugated CdS: Mn/ZnS quantum dots. Chem Commun. 2005;25:3144–6.

    Article  Google Scholar 

  12. Yang S, Chen D, Li N, Mei X, Qi X, Li H, Xu Q, Lu J. A facile preparation of targetable pH-sensitive polymeric nanocarriers with encapsulated magnetic nanoparticles for controlled drug release. J Mater Chem. 2012;22:25354–61.

    Article  CAS  Google Scholar 

  13. Liu J, Wang B, Hartono SB, Liu T, Kantharidis P, Middelberg APJ, Lu GQ, He L, Qiao SZ. Magnetic silica spheres with large nanopores for nucleic acid adsorption and cellular uptake. Biomaterials. 2012;33:970–8.

    Article  CAS  Google Scholar 

  14. Huang S, Li C, Cheng Z, Fan Y, Yang P, Zhang C, Yang K, Lin J. Magnetic Fe3O4@mesoporous silica composites for drug delivery and bioadsorption. J Colloid Interface Sci. 2012;376:312–21.

    Article  CAS  Google Scholar 

  15. Knezevic NZ, Slowing II, Lin VSY. Tuning the release of anticancer drugs from magnetic iron oxide/mesoporous silica core/shell nanoparticles. ChemPlusChem. 2012;77:48–55.

    Article  CAS  Google Scholar 

  16. Lin YS, Tseng CT, Hung Y, Chang C, Mou CY. Synthesis of hollow silica nanospheres with a microemulsion as the template. Chem Commun. 2009;3542–3544:3542–4.

    Article  Google Scholar 

  17. De Palma R, Peeters S, Van Bael MJ, Van den Rul H, Bonroy K, Laureyn W, Mullens J, Borghs G, Maes G. Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible. Chem Mater. 2007;19:1821–31.

    Article  Google Scholar 

  18. van Schooneveld MM, Vucic E, Koole R, Zhou Y, Stocks J, Cormode DP, Tang CY, Gordon RE, Nicolay K, Meijerink A, Fayad ZA, Mulder WJM. Improved biocompatibility and pharmacokinetics of silica nanoparticles by means of a lipid coating: a multimodality investigation. Nano Lett. 2008;8:2517–25.

    Article  Google Scholar 

  19. Costantino L, Gandolfi F, Tosi G, Rivasi F, Vandelli MA, Forni F. Peptide-derivatized biodegradable nanoparticles able to cross the blood–brain barrier. J Controlled Release. 2005;108:84–96.

    Article  CAS  Google Scholar 

  20. Roberts RL, Fine RE, Sandra A. Receptor-mediated endocytosis of transferrin at the blood–brain barrier. J Cell Sci. 1993;104:521–32.

    CAS  Google Scholar 

  21. Beduneau A, Saulnier P, Benoit JP. Active targeting of brain tumors using nanocarriers. Biomaterials. 2007;28:4947–67.

    Article  CAS  Google Scholar 

  22. Bickel U, Kang YS, Yoshikawa T, Pardridge WM. In-vivo demonstration of subcellular-localization of antitransferrin receptor monoclonal antibody-colloidal gold conjugate in brain capillary endothelium. J Histochem Cytochem. 1994;42:1493–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the financial supports from Beijing Municipal Education Committee (KM20110025007), Beijing Municipal Foundation for the Talents (2011D005018000001), Natural Science Foundation of China (81271639), and the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality (PHR201007114).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Gu or Ling Ye.

Additional information

Feng Yan and Ying Wang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, F., Wang, Y., He, S. et al. Transferrin-conjugated, fluorescein-loaded magnetic nanoparticles for targeted delivery across the blood–brain barrier. J Mater Sci: Mater Med 24, 2371–2379 (2013). https://doi.org/10.1007/s10856-013-4993-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4993-3

Keywords

Navigation