Skip to main content
Log in

An experimental and finite element poroelastic creep response analysis of an intervertebral hydrogel disc model in axial compression

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A hydrogel intervertebral disc (IVD) model consisting of an inner nucleus core and an outer anulus ring was manufactured from 30 and 35% by weight Poly(vinyl alcohol) hydrogel (PVA-H) concentrations and subjected to axial compression in between saturated porous endplates at 200 N for 11 h, 30 min. Repeat experiments (n = 4) on different samples (N = 2) show good reproducibility of fluid loss and axial deformation. An axisymmetric nonlinear poroelastic finite element model with variable permeability was developed using commercial finite element software to compare axial deformation and predicted fluid loss with experimental data. The FE predictions indicate differential fluid loss similar to that of biological IVDs, with the nucleus losing more water than the anulus, and there is overall good agreement between experimental and finite element predicted fluid loss. The stress distribution pattern indicates important similarities with the biological IVD that includes stress transference from the nucleus to the anulus upon sustained loading and renders it suitable as a model that can be used in future studies to better understand the role of fluid and stress in biological IVDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. S. McNALLY and R. G. C. ARRIDGE, J. Biomech. 28 (1995) 53.

    Article  CAS  PubMed  Google Scholar 

  2. N. BOGDUK, “Clinical anatomy of the Lumbar Spine and Sacrum” (United Kingdom, Churchill Livingstone, 1997).

    Google Scholar 

  3. E. J. CHIU, in Proceedings of the 43rd Annual Meeting, Orthopaedic Research Society (San Fransisco, CA, 1997).

  4. A. E. BAER, M. W. GRINSTAFF, K. A. SMEDS, L. M. BOYD and L. A. SETTON, in Proceedings of the Bioengineering Conference, ASME, 2001.

  5. A. S. HOFFMAN, Adv. Drug Delivery Rev. 43 (2002).

  6. A. S. HOFFMAN, Ann NY Acad Sci. 944 (2001) 62.

    CAS  PubMed  Google Scholar 

  7. O. WICHTERLE and D. LIM, Nature 185 (1960) 117.

    Google Scholar 

  8. D. DARWIS, P. STASICA, M. T. RAZZAK and J. M. ROSIAK, Rad. Phys. Chem. 63 (2002) 539.

    Article  CAS  Google Scholar 

  9. L. AMBROSIO, P. A. NETTI, S. IANNACE, J. HUANG and L. NICOLAIS, J. Mater. Sci.: Mater Med. 7 (1996) 251.

    Article  CAS  Google Scholar 

  10. Q. B. BAO and P. A. HIGHAM, US Patent 5,192,326 (1993).

  11. M. CIACH and J. AWREJCEWICZ, in Proceedings of the European Medical and Biological Engineering Conference, Vienna, 1999.

  12. N. D. BROOM and A. OLOYEDE, Biomaterials 19 (1998) 1179.

    Article  CAS  PubMed  Google Scholar 

  13. A. A. J. GOLDSMITH, A. HAYES and S. E. CLIFT, ABAQUS Users’ Conference, Paris, France, 1995, p. 305.

  14. E. WOLFGANG, A. AYHAN and M. BERND, Proc. Appl. Math. Mech. 2 (2003).

  15. F. YOSHII, K. MAKUUCHI and D. DARWIS, et al., Rad. Phys. Chem. 46 (1995) 169.

    Article  CAS  Google Scholar 

  16. M. KOBAYASHI, J. TOGUCHIDA and M. OKA, Biomaterials 24 (2003) 639.

    Article  CAS  PubMed  Google Scholar 

  17. J. A. STAMMEN, S. WILLIAMS, D. N. KU and R. E. GULDBERG, ibid. 22 (2001) 799.

    Article  CAS  PubMed  Google Scholar 

  18. S.-H. HYON and Y. IKADA, US patent No, 4,663,358 (1986).

  19. P. SILVA, S. C. DREW, S. CROZIER, M. VEIDT and M. J PEARCY, in Proceedings of the World Congress on Medical Physics and Biomedical Engineering, Sydney [CD-ROM] ISBN 1877040142 paper no. 3677, 2003, p. 4.

  20. HIBBIT, KARLSSON and SORENSEN, ABAQUS Theory and User’s Manual, version 6.3 (2002).

  21. M. A. BIOT, J. Appl. Phys. 12 (1941) 155.

    Article  Google Scholar 

  22. W. G. SCHERER and R. M. SWIATEK, J. Non-Cryst. Solids 113 (1989) 119.

    Article  CAS  Google Scholar 

  23. M. ARGOUBI and A. SHIRAZI-ADL, J. Biomech. 29 (1996) 1331.

    Article  CAS  PubMed  Google Scholar 

  24. N. D. BROOM and R. FLACHMANN, J. Anatomy 202 (2003) 495.

    Article  Google Scholar 

  25. D. S. MCNALLY and M. A. ADAMS, Spine 17 (1992) 66.

    CAS  PubMed  Google Scholar 

  26. J. CASSIDY, A. HILTNER and E. BAER, J. Mater. Sci.: Mater. Med. 1 (1990) 69.

    Article  Google Scholar 

  27. A. L. NACHEMSON, Acta Orthop. Scand. S43 (1960) 12.

    Google Scholar 

  28. W. Y. GU, X. G. MAO and R. J. FOSTER, et al., Spine 24 (1999) 2449.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, P., Crozier, S., Veidt, M. et al. An experimental and finite element poroelastic creep response analysis of an intervertebral hydrogel disc model in axial compression. J Mater Sci: Mater Med 16, 663–669 (2005). https://doi.org/10.1007/s10856-005-2538-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-005-2538-0

Keywords

Navigation