Skip to main content
Log in

Structural and optoelectronic properties of indium doped SnO2 thin films deposited by sol gel technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Indium doped tin oxide (SnO2:In) thin films were deposited on glass substrates by sol–gel dip coating technique. X-ray diffraction pattern of SnO2:In thin films annealed at 500 °C showed tetragonal phase with preferred orientation in T (110) plane. The grain size of tin oxide (SnO2) in SnO2:In thin films are found to be 6 nm which makes them suitable for gas sensing applications. AFM studies showed an inhibition of grain growth with increase in indium concentration. The rms roughness value of SnO2:In thin films are found to 1 % of film thickness which makes them suitable for optoelectronic applications. The film surface revealed a kurtosis values below 3 indicating relatively flat surface which make them favorable for the production of high-quality transparent conducting electrodes for organic light-emitting diodes and flexible displays. X-ray photoelectron spectroscopy gives Sn 3d, In 3d and O 1s spectra on SnO2:In thin film which revealed the presence of oxygen vacancies in the SnO2:In thin film. These SnO2:In films acquire n-type conductivity for 0–3 mol% indium doping concentration and p type for 5 and 7 mol% indium doping concentration in SnO2 films. An average transmittance of >80 % (in ultra-violet–Vis region) was observed for all the SnO2:In films he In doped SnO2 thin films demonstrated the tailoring of band gap values. Photoluminescence spectra of the films exhibited an increase in the emission intensity with increase in indium doping concentration which may be due structural defects or luminescent centers, such as nanocrystals and defects in the SnO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Sujatha Lekshmy, L.V. Maneeshya, P.V. Thomas, K. Joy, Indian J. Phys. 87, 33–38 (2013)

    Article  Google Scholar 

  2. Y.S. He, J.C. Campbell, R.C. Murphy, M.F. Arendt, J.S. Swinnea, J. Mater. Res. 8, 3131–3134 (1993)

    Article  Google Scholar 

  3. M. Choudhary, N.K. Singh, R. Dwivedi, V.N. Mishra, J. Mater. Sci. Mater. Electron. 24, 752–757 (2013)

    Article  Google Scholar 

  4. A. Chaparadz, S.B. Rananavare, Nanotechnology 21, 035708 (2010)

    Article  Google Scholar 

  5. M.M. Bagheri-Mohagheghi, N. Shahtahmasebi, M.R. Alinejad, A. Youssefi, M. Shokooh-Saremi, Solid State Sci. 11, 233–239 (2009)

    Article  Google Scholar 

  6. J.M. Wu, Nanotechnology 21, 235501 (2010)

    Article  Google Scholar 

  7. S.S. Pan, Y.X. Zhang, X.M. Teng, G.H. Li, L. Li, J. Appl. Physiol. 103, 093103 (2008)

    Article  Google Scholar 

  8. Z. Ji, Z. He, Y. Song, K. Liu, Z.Z. Ye, J. Cryst. Growth 259, 282–285 (2003)

    Article  Google Scholar 

  9. Z. Ji, L. Zhao, Z. He, Q. Zhou, C. Chen, Mater. Lett. 60, 1387–1389 (2006)

    Article  Google Scholar 

  10. M. Caglar, K.C. Atar, Spectrochim. Acta A Mol. Biomol. Spectrosc. 96, 882–888 (2012)

    Article  Google Scholar 

  11. Y.S. Jung, D.W. Lee, D.Y. Jeon, Appl. Surf. Sci. 221, 136–142 (2004)

    Article  Google Scholar 

  12. I. Volintiru, M. Creatore, B.J. Kniknie, C.I.M.A. Spee, M.C.M. van de Sanden, J. Appl. Phys. 102, 043709 (2007)

    Article  Google Scholar 

  13. S. Sujatha Lekshmy, K. Joy, J. Sol–Gel Sci. Technol. 67, 29–38 (2013)

    Article  Google Scholar 

  14. K. Joy, L.V. Maneeshya, K. Jijimon, P.V. Thomas, Thin Solid Films 520, 2683–2688 (2012)

    Article  Google Scholar 

  15. Z. Ji, L. Zhao, Z. He, Q. Zhou, C. Chen, Mater. Lett. 60, 1387–1389 (2006)

    Article  Google Scholar 

  16. Zhenguo Ji, Zhenjie He, Yongliang Song, Kun Liu, Yin Xiang, Thin Solid Films 460, 324–326 (2004)

    Article  Google Scholar 

  17. R. Swanepoel, J. Phys. E: Sci. Instrum. 16, 1214 (1983)

    Article  Google Scholar 

  18. F.R. Sensato, R. Custodio, M. Calatayud, A. Beltran, J. Andres, J. Sambrano, E. Longo, Surf. Sci. 511, 408 (2002)

    Article  Google Scholar 

  19. A. Santhosh Kumar, K.K. Nagaraja, H.S. Nagaraja, J. Mater. Sci. Mater. Electron. 24, 3812–3822 (2013)

    Article  Google Scholar 

  20. S. Shukla, P. Zhang, H.J. Cho, Z. Rahman, C. Drake, S. Seal, J. Appl. Phys. 98, 104306 (2005)

    Article  Google Scholar 

  21. M. Ippommatsu, H. Ohnishi, H. Saskaki, T. Matsumoto, J. Appl. Phys. 69, 836 (1991)

    Article  Google Scholar 

  22. C. Xu, J. Tamaki, N. Miura, N. Yamazoe, Sens. Actuators, B 3, 147 (1991)

    Article  Google Scholar 

  23. Chitra Agashe, J. Hupkes, G. Schope, M. Berginski, Sol. Energy Mater. Sol. Cells 93, 1256–1262 (2009)

    Article  Google Scholar 

  24. D. Kim, S. Kim, Surf. Coat. Technol. 176, 23 (2003)

    Article  Google Scholar 

  25. H.L. Ma, X.T. Hao, J. Ma, Y.G. Yang, J. Huang, D.H. Zhang, X.G. Xu, Appl. Surf. Sci. 191, 313 (2002)

    Article  Google Scholar 

  26. G. Beamson, D. Briggs, High Resolution XPS of Organic Polymers–The Scienta ESCA300 Database (Wiley Interscience, New York, 1992)

    Google Scholar 

  27. Derrick W. Lucey, David J. MacRae, Madalina Furis, Yudhisthira Sahoo, Alexander N. Cartwright, Paras N. Prasad, Chem. Mater. 17, 3754–3762 (2005)

    Article  Google Scholar 

  28. K. Joy, S. Sujatha Lekshmy, P.V. Thomas, J. Sol–Gel Sci. Technol. doi: 10.1007/s10971-011-26803

  29. D.L. Wood, J. Tauc, J. Phys. Rev. B 5, 3144–3151 (1972)

    Article  Google Scholar 

  30. G. Haacke, J. Appl. Phys. 47, 4086–4089 (1976)

    Article  Google Scholar 

  31. S. Sujatha Lekshmy, G.P. Daniel, K. Joy, Appl. Surf. Sci. 274, 95–100 (2013)

    Article  Google Scholar 

  32. C. Drake, S. Deshpande, S. Seal, Appl. Phys. Lett. 89, 1 (2006)

    Article  Google Scholar 

  33. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79, 7983 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Joy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sujatha Lekshmy, S., Joy, K. Structural and optoelectronic properties of indium doped SnO2 thin films deposited by sol gel technique. J Mater Sci: Mater Electron 25, 1664–1672 (2014). https://doi.org/10.1007/s10854-014-1781-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-1781-x

Keywords

Navigation