Skip to main content
Log in

In situ synthesis and thermal, tribological properties of thermosetting polyimide/graphene oxide nanocomposites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The full exfoliation graphene oxide (GO) nanosheets were synthesized by an improved Hummers’ method. The phenylethynyl terminated thermosetting polyimide (PI) and PI/GO nanocomposites were prepared via a polymerization of monomer reactants process. Thermogravimetric analysis indicated that the incorporation of GO increased the thermal stability of the PI at low filling content. The friction and wear testing results of the PI and PI/GO nanocomposites under dry sliding condition against GCr15 steel showed that the addition of GO evidently improved the friction and wear properties of PI, which were considered to be the result of the formation of uniform transfer film and the increasing of load-carrying capacity. The friction and wear properties of the PI and PI/GO nanocomposites were investigated on a model ring-on-block test rig under dry sliding conditions against the GCr15 steel. Experimental results showed that the addition of GO evidently improved the friction and wear properties of PI, which were considered to be the result of the formation of uniform transfer film and the increasing of load-carrying capacity. The optimum GO content of nanocomposite for tribological properties is 3 wt%, which could be a potential candidate for tribo-material under dry sliding condition against GCr15 steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191. doi:10.1038/nmat1849

    Article  CAS  Google Scholar 

  2. Rao CNR, Biswas K, Subrahmanyam KS, Govindaraj A (2009) Graphene, the new nanocarbon. J Mater Chem 19:2457. doi:10.1039/b815239j

    Article  CAS  Google Scholar 

  3. Soldano C, Mahmood A, Dujardin E (2010) Production, properties and potential of graphene. Carbon 48:2127. doi:10.1016/j.carbon.2010.01.058

    Article  CAS  Google Scholar 

  4. He HK, Gao C (2010) General approach to individually dispersed, highly soluble, and conductive graphene nanosheets functionalized by nitrene chemistry. Chem Mater 22:5054. doi:10.1021/cm101634k

    Article  CAS  Google Scholar 

  5. Verdejo R, Bernal MM, Romasanta LJ, Lopez-Manchado MA (2011) Graphene filled polymer nanocomposites. J Mater Chem 21:3301. doi:10.1039/c0jm02708a

    Article  CAS  Google Scholar 

  6. Wilson NR, Pandey PA, Beanland R, Young RJ, Kinloch IA, Gong L, Liu Z, Suenaga K, Rourke JP, York SJ, Sloan J (2009) Graphene oxide: structural analysis and application as a highly transparent support for electron microscopy. ACS Nano 3(9):2547. doi:10.1021/nn900694t

    Article  CAS  Google Scholar 

  7. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327. doi:10.1038/nnano.2008.96

    Article  CAS  Google Scholar 

  8. Rourke JP, Pandey PA, Moore JJ, Bates M, Kinloch IA, Young RJ, Wilson NR (2011) The real graphene oxide revealed: stripping the oxidative debris from the graphene-like sheets. Angew Chem Int Ed 50(14):3173. doi:10.1002/anie.201007520

    Article  CAS  Google Scholar 

  9. Mittal KL (1998) Polyimides: synthesis, characterization and application. Plenum, New York

    Google Scholar 

  10. Ghost MK, Mittal LK (1996) Polyimide fundamental and applications. Marcel Dekker, New York

    Google Scholar 

  11. Hergenrother PM, Smith JG Jr (1994) Chemistry and properties of imide oligomers end-capped with phenylethynylphthalic anhydrides. Polymer 35:4857. doi:10.1016/0032-3861(94)90744-7

    Article  CAS  Google Scholar 

  12. Hergenrother PM (2000) Development of composites, adhesives and sealants for high-speed commercial airplanes. SAMPE J 36(1):30

    CAS  Google Scholar 

  13. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun ZZ, Slesarev A (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806. doi:10.1021/nn1006368

    Article  CAS  Google Scholar 

  14. Serafini TT, Delvigs P, Lightsey GR (1972) Thermally stable polyimides from solutions of monomeric reactants. J Appl Polym Sci 16:905. doi:10.1002/app.1972.070160409

    Article  CAS  Google Scholar 

  15. Wang JZ, Yan FY, Xue QJ (2009) Friction and wear behavior of ultra-high molecular weight polyethylene sliding against GCr15 steel and electroless Ni-P alloy coating under the lubrication of seawater. Tribol Lett 35:85. doi:10.1007/s11249-009-9435-5

    Article  CAS  Google Scholar 

  16. Guo HL, Wang XF, Qian QY, Wang FB, Xia XH (2009) A green approach to the synthesis of graphene nanosheets. ACS Nano 3(9):2653. doi:10.1021/nn900227d

    Article  CAS  Google Scholar 

  17. Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T et al (2009) Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater 19(14):2297. doi:10.1002/adfm.200801776

    Article  CAS  Google Scholar 

  18. Ansari S, Kelarakis A, Estevez L, Giannelis EP (2010) Oriented arrays of graphene in a polymer matrix by in situ reduction of graphite oxide nanosheets. Small 2:205. doi:10.1002/smll.200900765

    Article  Google Scholar 

  19. Xiong M, You B, Zhou S, Wu L (2004) Study on acrylic resin/titania organic inorganic hybrid materials prepared by the sol–gel process. Polymer 45:2967. doi:10.1016/j.polymer.2004.02.043

    Article  CAS  Google Scholar 

  20. Yu YY, Chen CY, Chen WC (2003) Synthesis and characterization of organic–inorganic hybrid thin films from poly(acrylic) and monodispersed colloidal silica. Polymer 44:593. doi:10.1016/S0032-3861(02)00824-8

    Article  CAS  Google Scholar 

  21. Li YQ, Wang QH, Wang TM, Pan GQ (2011) Preparation and tribological properties of graphene oxide/nitrile rubber nanocomposites. J Mater Sci. doi:10.1007/s10853-011-5846-4

  22. Satyanarayana N, Skandesh Rajan KS, Sinha SK, Shen L (2007) Carbon nanotube reinforced polyimide thin-film for high wear durability. Tribol Lett 27:181. doi:10.1007/s11249-007-9219-8

    Article  CAS  Google Scholar 

  23. Cai H, Yan FY, Xue QJ, Liu WM (2003) Investigation of tribological properties of Al2O3–polyimide nanocomposites. Polym Test 22:875. doi:10.1016/S0142-9418(03)00024-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the National Natural Science Foundation of China (Grant No. 50805139).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qihua Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Li, Y., Wang, T. et al. In situ synthesis and thermal, tribological properties of thermosetting polyimide/graphene oxide nanocomposites. J Mater Sci 47, 1867–1874 (2012). https://doi.org/10.1007/s10853-011-5975-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5975-9

Keywords

Navigation