Skip to main content
Log in

Self-organized TiO2 nanotubes with controlled dimensions by anodic oxidation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of ammonium fluoride (NH4F) concentration on the dimensions (length, diameter, and wall thickness) of the self-organized nanotube arrays has been investigated. Results show that varying the concentration of NH4F exerts a strong effect on changing the dimensions of the as-grown nanotube arrays. The length of the nanotube arrays increases gradually by increasing the concentration up to a maximum length at a concentration of 1.00 wt%, after which the length decreases slightly with the increase in NH4F concentration. It was also observed that the diameter and wall thickness of the nanotube arrays vary with the change in concentration of NH4F, where the diameter was found to alter between 80 and 140 nm, and the wall thickness decreases by increasing the NH4F concentration. These results indicate that it is possible to entirely control the dimensions of the nanotube arrays, by tailoring the concentration of NH4F besides the anodization time and voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Park S, Lim JH, Chung SW, Mirkin CA (2004) Science 303:348. doi:https://doi.org/10.1126/science.1093276

    Article  CAS  Google Scholar 

  2. Sieber I, Hildebrand H, Friedrich A, Schmuki P (2006) J Electroceram 16:35. doi:https://doi.org/10.1007/s10832-006-4351-7

    Article  CAS  Google Scholar 

  3. Lee SB, Mitchell DT, Trofin L, Nevanen TK, Soderlund H, Martin CR (2002) Science 296:2198. doi:https://doi.org/10.1126/science.1071396

    Article  CAS  Google Scholar 

  4. Munoz AG, Chen Q, Schmuki P (2007) J Solid State Electrochem 11:1077. doi:https://doi.org/10.1007/s10008-006-0241-9

    Article  CAS  Google Scholar 

  5. Munoz AG (2007) Electrochim Acta 52:4167. doi:https://doi.org/10.1016/j.electacta.2006.11.035

    Article  CAS  Google Scholar 

  6. Adachi M, Murata Y, Harada M, Yoshikawa Y (2000) Chem Lett 29:942. doi:https://doi.org/10.1246/cl.2000.942

    Article  Google Scholar 

  7. Chu SZ, Inoue S, Wada K, Li D, Haneda H, Awatsu S (2003) J Phys Chem B 107:6586. doi:https://doi.org/10.1021/jp0349684

    Article  CAS  Google Scholar 

  8. Varghese OK, Gong D, Paulose M, Ong KG, Dickey EC, Grimes CA (2003) Adv Mater 15:624. doi:https://doi.org/10.1002/adma.200304586

    Article  CAS  Google Scholar 

  9. Mor GK, Carvalho MA, Varghese OK, Pishko MV, Grimes CA (2004) J Mater Res 19:628. doi:https://doi.org/10.1557/jmr.2004.19.2.628

    Article  CAS  Google Scholar 

  10. Paulose M, Varghese OK, Mor GK, Grimes CA, Ong KG (2006) Nanotechnology 17:398. doi:https://doi.org/10.1088/0957-4484/17/2/009

    Article  CAS  Google Scholar 

  11. Mor GK, Shankar K, Varghese OK, Grimes CA (2004) J Mater Res 19:2989. doi:https://doi.org/10.1557/JMR.2004.0370

    Article  CAS  Google Scholar 

  12. Uchida S, Chiba R, Tomiha M, Masaki N, Shirai M (2002) Electrochemistry 70:418

    Article  CAS  Google Scholar 

  13. Adachi M, Murata Y, Okada I, Yoshikawa Y (2003) J Electrochem Soc 150:G488. doi:https://doi.org/10.1149/1.1589763

    Article  CAS  Google Scholar 

  14. Paulose M, Shankar K, Varghese OK, Mor GK, Hardin B, Grimes CA (2006) Nanotechnology 17:1. doi:https://doi.org/10.1088/0957-4484/17/1/001

    Article  Google Scholar 

  15. Zhang Z, Yuan Y, Fang Y, Liang L, Ding H, Shi G, Jin L (2007) J Electroanal Chem 610:179. doi:https://doi.org/10.1016/j.jelechem.2007.07.028

    Article  CAS  Google Scholar 

  16. Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin MY, Ancouturier M (1999) Surf Interface Anal 27:629. doi 10.1002/(SICI)1096-9918(199907)27:7<629::AID-SIA551>3.0.CO;2-0

    Article  CAS  Google Scholar 

  17. Mor GK, Verghese OK, Paulose M, Shankar K, Grimes CA (2006) Sol Energy Mater Sol Cells 90:20011. doi:https://doi.org/10.1016/j.solmat.2006.04.007

    Article  Google Scholar 

  18. Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC (2001) J Mater Res 16:3331. doi:https://doi.org/10.1557/JMR.2001.0457

    Article  CAS  Google Scholar 

  19. Cai Q, Paulose M, Varghese OK, Grimes CA (2005) J Mater Res 20:230. doi:https://doi.org/10.1557/JMR.2005.0020

    Article  CAS  Google Scholar 

  20. Macak JM, Taveira LV, Tsuchiya H, Sirotna K, Macak J, Schmuki P (2006) J Electroceram 16:29. doi:https://doi.org/10.1007/s10832-006-3904-0

    Article  CAS  Google Scholar 

  21. Yoriya S, Paulose M, Varghese OK, Mor GK, Grimes CA (2007) J Phys Chem C 111:13770. doi:https://doi.org/10.1021/jp074655z

    Article  CAS  Google Scholar 

  22. Xiao P, Garcia BB, Guo Q, Liu D, Cao G (2007) Electrochem Commun 9:2441. doi:https://doi.org/10.1016/j.elecom.2007.07.020

    Article  CAS  Google Scholar 

  23. Macak JM, Schmuki P (2006) Electrochim Acta 52:1258. doi:https://doi.org/10.1016/j.electacta.2006.07.021

    Article  CAS  Google Scholar 

  24. Bauer S, Kleber S, Schmuki P (2006) Electrochem Commun 8:1321. doi:https://doi.org/10.1016/j.elecom.2006.05.030

    Article  CAS  Google Scholar 

  25. Prida VM, Manova E, Vega V, Hernandez-Velez M, Aranda P, Pirota KR, Vazquez M, Ruiz-Hitzky E (2007) J Magn Magn Mater 316:110. doi:https://doi.org/10.1016/j.jmmm.2007.02.021

    Article  CAS  Google Scholar 

  26. Macak JM, Tsuchiya H, Schmuki P (2005) Angew Chem Int Ed 44:2100. doi:https://doi.org/10.1002/anie.200462459

    Article  CAS  Google Scholar 

  27. Paulose M, Shankar K, Yoriya S, Prakasam HE, Varghese OK, Mor GK, Latempa TA, Fitzgerald A, Grimes CA (2006) J Phys Chem B 110:16179. doi:https://doi.org/10.1021/jp064020k

    Article  CAS  Google Scholar 

  28. Ghicov A, Tsuchiya H, Macak JM, Schmuki P (2005) Electrochem Commun 7:505. doi:https://doi.org/10.1016/j.elecom.2005.03.007

    Article  CAS  Google Scholar 

  29. Yang DJ, Kim HG, Cho SJ, Choi WY (2008) Mater Lett 62:775. doi:https://doi.org/10.1016/j.matlet.2007.06.058

    Article  CAS  Google Scholar 

  30. Macak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P (2007) Curr Opin Solid State Mater Sci 11:3. doi:https://doi.org/10.1016/j.cossms.2007.08.004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support for this work from the Fok Fing Tong Education Foundation (Grant No. 91050), and the National Natural Science Foundation of China (Grant No. 50202007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ammar Elsanousi or Chengcun Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elsanousi, A., Zhang, J., Fadlalla, H.M.H. et al. Self-organized TiO2 nanotubes with controlled dimensions by anodic oxidation. J Mater Sci 43, 7219–7224 (2008). https://doi.org/10.1007/s10853-008-2947-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2947-9

Keywords

Navigation