Skip to main content

Advertisement

Log in

Thermal equation of state of natural chromium spinel up to 26.8 GPa and 628 K

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A pressure–volume–temperature data set has been obtained for natural chromium spinel, using synchrotron X-ray diffraction with a resistance heated diamond-anvil cell (RHDAC). The unit cell parameter of the chromium spinel was measured by energy dispersive X-ray diffraction up to pressures of 26.8 GPa and temperatures of 628 K. No phase change has been observed. The observed P–V–T data were fit to the high-temperature Birch-Murnaghan equation of state, with V 0 fixed at its experimental value, yields K 0 = 209 ± 9 GPa, (∂K/∂T)P = −0.056 ± 0.035 GPa K−1, and α0 = 7±1 × 10−5 K−1. The temperature derivative of the bulk modulus (∂K/∂T)P of chromium spinel is determined here for the first time. The obtained K 0 is slightly higher than the previous results of synthetic spinel. We suggest that Fe2+–Mg2+ substitution is responsible for the high bulk modulus of chromium spinel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ueda N, Omata T, Hikuma N, Ueda K, Mizoquchi H, Hashimoto T et al (1992) Appl Phys Lett 61:1954. doi:https://doi.org/10.1063/1.108374

    Article  CAS  Google Scholar 

  2. McCallum RW, Johnston DC, Luengo CA, Maples MB (1976) J Low Temp Phys 25:177. doi:https://doi.org/10.1007/BF00654828

    Article  CAS  Google Scholar 

  3. Gusmano G, Montesperelli G, Nunziante P, Traversa E (1993) Br Ceram Trans 92:104

    CAS  Google Scholar 

  4. Wakamura K (1989) J Solid State Chem 78:197. doi:https://doi.org/10.1016/0022-4596(89)90096-0

    Article  CAS  Google Scholar 

  5. Green HWII (1984) Geophys Res Lett 11:817. doi:https://doi.org/10.1029/GL011i009p00817

    Article  Google Scholar 

  6. Arai S (1992) Mineral Mag 56:173. doi:https://doi.org/10.1180/minmag.1992.056.383.04

    Article  CAS  Google Scholar 

  7. Irifune T, Fujino K, Ohtani E (1991) Nature 349:409. doi:https://doi.org/10.1038/349409a0

    Article  CAS  Google Scholar 

  8. Funamori N, Jeanloz R, Nguyen JH, Kavner A, Caldwell WA (1998) J Geophys Res 103:20813. doi:https://doi.org/10.1029/98JB01575

    Article  CAS  Google Scholar 

  9. Liu LG (1978) Earth Planet Sci Lett 41:398. doi:https://doi.org/10.1016/0012-821X(78)90171-1

    Article  CAS  Google Scholar 

  10. Irifune T, Naka H, Sanchira T, Inoue T, Funakoshi K (2002) Phys Chem Miner 29:645. doi:https://doi.org/10.1007/s00269-002-0275-1

    Article  CAS  Google Scholar 

  11. Akaogi M, Hamada Y, Suzuki T, Kobayashi M, Okada M (1999) Phys Earth Planet Inter 115:67. doi:https://doi.org/10.1016/S0031-9201(99)00076-X

    Article  CAS  Google Scholar 

  12. Wang ZW, Lazor P, Saxena SK, O’Neill Hugh St C (2002) Mater Res Bull 37:1589

    Article  CAS  Google Scholar 

  13. Andrault D, Bolfan-Casanova N (2001) Phys Chem Miner 28:211. doi:https://doi.org/10.1007/s002690000149

    Article  CAS  Google Scholar 

  14. Kruger MB, Nguyen JH, Caldwell W, Jeanloz R (1997) Phys Rev B 56:1. doi:https://doi.org/10.1103/PhysRevB.56.1

    Article  CAS  Google Scholar 

  15. Levy D, Pavese A, Hanfland M (2003) Am Mineral 88:93

    Article  CAS  Google Scholar 

  16. Finger LW, Hazen RM, Hofmeister AM (1986) Phys Chem Miner 13:215. doi:https://doi.org/10.1007/BF00308271

    Article  CAS  Google Scholar 

  17. (a) Pavese A, Artioli G, Hull S (1999) Am Mineral 84:905; (b) Nestola F, Ballaran B, Balic-Zunic T, Princivalle F, Secco L, Negro AD (2007) Am Mineral 92:1838

  18. Yoneda A (1990) J Phys Earth 38:19

    Article  Google Scholar 

  19. Catti M, Fava FF, Zicovich C, Dovesi R (1999) Phys Chem Miner 26:389

    Article  CAS  Google Scholar 

  20. Levy D, Diella V, Dapiaggi M, Sani A, Gemmi M, Pavese A (2004) Phys Chem Miner 31:122

    Article  CAS  Google Scholar 

  21. Levy D, Pavese A, Sani A, Pischedda V (2001) Phys Chem Miner 28:612

    Article  CAS  Google Scholar 

  22. Levy D, Diella V, Pavese A, Dapiaggi M, Sani A (2005) Am Mineral 90:1157

    Article  CAS  Google Scholar 

  23. Levy D, Pavese A, Hanfland M (2000) Phys Chem Miner 27:638

    Article  CAS  Google Scholar 

  24. Wang D, Simmons G (1972) J Geophys Res 77:4379

    Article  CAS  Google Scholar 

  25. Hearmon RFS (1984) In: Hellwege KH, Hellwege AM (eds) Landolt-Börnstein Tables, III/18. Springer Verlag, Berlin, p 559

    Google Scholar 

  26. Mao HK, Takahashi T, Bassett WA, Kinsland GL, Merrill L (1974) J Geophys Res 79:1165

    Article  CAS  Google Scholar 

  27. Gerward L, Staun Olsen J (1995) Appl Radiat Isot 46:553

    Article  CAS  Google Scholar 

  28. Haavik C, Stolen S, Fjellvag H, Hanfland M, Häusermann D (2000) Am Mineral 85:514

    Article  CAS  Google Scholar 

  29. Reichmann HJ, Jacobsen SD (2004) Am Mineral 89:1061

    Article  CAS  Google Scholar 

  30. Ma MN, Liu J, Zhou WG, Li YC, Li XD (2004) Nucl Technol 27:931 in Chinese

    CAS  Google Scholar 

  31. Zhao YS, Lawson AC, Zhang JZ, Bennett BI (2000) Phys Rev B 62:8766

    Article  CAS  Google Scholar 

  32. Liu J, Zhao J, Che RZ, Yang Y (2000) Chin J High Press Phys 14:247 in Chinese

    Google Scholar 

  33. Holland TJ, Tedfern SA (1997) Mineral Mag 61:65

    Article  CAS  Google Scholar 

  34. Reichmann HJ, Jacobsen SD (2006) Am Mineral 91:1049

    Article  CAS  Google Scholar 

  35. Piermarini GJ, Block S, Barnett JD (1973) J Appl Phys 44:5377

    Article  CAS  Google Scholar 

  36. Fei YW (1999) Am Mineral 84:272

    Article  CAS  Google Scholar 

  37. Vermaas FHS, Schmidt ER (1959) B Miner Petrol 6:219

    Article  Google Scholar 

  38. Hazen RM, Yang HX (1999) Am Mineral 84:1956

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank two anonymous referees for their helpful comments and suggestions. This work was performed at 4W2 High-Pressure Station, Beijing Synchrotron Radiation Facility (BSRF). High-Pressure Station is supported by Chinese Academy of Sciences (Grant No. KJCX2-SW-N20,KJCX2-SW-N03). This work is supported by National Basic Research Program of China (Grant No 2005CB724400), the Knowledge Innovation Project of Chinese Academy of Science (Grant No KJCX2-SW-N20), and the National Natural Science Foundation of China (Grant No 40574036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenge Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, D., Zhou, W., Liu, C. et al. Thermal equation of state of natural chromium spinel up to 26.8 GPa and 628 K. J Mater Sci 43, 5546–5550 (2008). https://doi.org/10.1007/s10853-008-2825-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2825-5

Keywords

Navigation