Skip to main content
Log in

Learning-Induced Synchronization and Plasticity of a Developing Neural Network

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Learning-induced synchronization of a neural network at various developing stages is studied by computer simulations using a pulse-coupled neural network model in which the neuronal activity is simulated by a one-dimensional map. Two types of Hebbian plasticity rules are investigated and their differences are compared. For both models, our simulations show a logarithmic increase in the synchronous firing frequency of the network with the culturing time of the neural network. This result is consistent with recent experimental observations. To investigate how to control the synchronization behavior of a neural network after learning, we compare the occurrence of synchronization for four networks with different designed patterns under the influence of an external signal. The effect of such a signal on the network activity highly depends on the number of connections between neurons. We discuss the synaptic plasticity and enhancement effects for a random network after learning at various developing stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmari SE, Buchanan J, Smith SJ (2000) Assembly of presynaptic active zones from cytoplasmic transport packets. Nature Neurosci. 3: 445–451.

    CAS  PubMed  Google Scholar 

  • Ben-Ari Y (2001) Developing networks play a similar melody. Trends Neurosci. 24: 353–360.

    CAS  PubMed  Google Scholar 

  • Ben-Ari Y, Cherubini E, Corradetti R, Gaiarsa JL (1989) Giant synaptic potentials in immature rat CA3 hippocampal neurons. J. Physiol. (Lond) 416: 303–325.

    CAS  Google Scholar 

  • Bi B, Poo M (2001) Synaptic modification by correlated activity: Hebb's postulate revisited. Annu. Rev. Neurosci. 24: 139–166.

    Article  CAS  PubMed  Google Scholar 

  • Bikson M, Bihi RID, Vreugdenhil M, Köhling R, Fox JE, Jefferys JGR (2002) Quinine suppresses extracellular potassium transients and ictal epileptiform activity without decreasing neuronal excitability in vitro. Neurosci. 115: 251–261.

    Article  CAS  Google Scholar 

  • Buchs PA, Muller D (1996) Induction of long-term potentiation is associated with major ultrastructural changes of activated synapses. Proc. Natl. Acad. Sci. USA 93: 8040–8045.

    Article  CAS  PubMed  Google Scholar 

  • Castro CA, Silbert LH, McNaughton BL, Barnes CA (1989) Recovery of spatial learning deficits after decay of electrically induced synaptic enhancement in the hippocampus. Nature 342: 545–548.

    Article  CAS  PubMed  Google Scholar 

  • Engert F, Bonhoeffer T (1999) Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399: 66–70.

    CAS  PubMed  Google Scholar 

  • Hayakawa Y, Sawada Y (2000) Learning-induced synchronization of a globally coupled excitable map system. Phy. Rev. E Stat. Nonlin. Soft Matter Phys. 61: 5091–5097.

    CAS  Google Scholar 

  • Jia LC, Sano M, Lai PY, Chan CK (2004) Connectivities and synchronous firing in cortical neuronal networks. Phys. Rev. Lett. 93: 088101.

    CAS  PubMed  Google Scholar 

  • Jontes JD, Buchanan J, Smith SJ (2000) Growth cone and dendrite dynamics in zebrafish embryos: early events in synaptogenesis imaged in vivo. Nature Neurosci. 3: 231–237.

    CAS  PubMed  Google Scholar 

  • Koch C (1999) Biophysics of Computation. Oxford University Press, New York, pp. 308–329.

    Google Scholar 

  • Labos E (1986) Chaos and neural networks. In: Degn H, Holden AV, Olsen LF, eds. Chaos in Biological Systems. Plenum Press, New York, pp. 195–206.

    Google Scholar 

  • Linsker R (1986) From basic network principles to neural architecture: Emergence of spatial-opponent cells. Proc. Natl. Acad. Sci. USA 83: 7508–7512.

    CAS  PubMed  Google Scholar 

  • Markram H, Lubke J, Frostscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275: 213–215.

    Article  CAS  PubMed  Google Scholar 

  • Mikkonen JE, Gr nfors T, Chrobak JJ, Penttonen M (2002) Hippocampus retains the periodicity of gamma stimulation in vivo. J. Neurophysiol. 88: 2349–2354.

    CAS  PubMed  Google Scholar 

  • Moser EI, Krobert KA, Moser MB, Morris RGM (1998) Impaired Spatial Learning after Saturation of Long-Term Potentiation. Science 281: 2038–2042.

    Article  CAS  PubMed  Google Scholar 

  • Nass MN, Cooper LN (1975) A theory for the development of feature detecting cells in visual cortex. Biol. Cyb. 19: 1–18.

    CAS  Google Scholar 

  • Packard MG, Knowlton BJ (2002) Learning and memory functions of the basal ganglia. Annu. Rev. Neurosci. 25: 563–593.

    Article  CAS  PubMed  Google Scholar 

  • Penttonen M, Nurminen N, Miettinen R, Sirvio J, Henze DA, Csicsvari J, Buzsaki G (1999) Ultra-slow oscillation (0.025 Hz) triggers hippocampal afterdischarges in Wistar rats. Neurosci. 94: 735–743.

    Article  CAS  Google Scholar 

  • Reynolds JNJ, Hyland BI, Wickens JR (2001) A cellular mechanism of reward-related learning. Nature 413: 67–70.

    Article  CAS  PubMed  Google Scholar 

  • Schultz W, Tremblay L, Hollerman JR (2003) Changes in behavior-related neuronal activity in the striatum during learning. Trends Neurosci. 26: 321–328.

    Article  CAS  PubMed  Google Scholar 

  • Shayer LP, Campbell SA (2000) Stability, bifurcation, and multistability in a system of two coupled neurons with multiple time delays. SIAM J. Appl. Math. 61:673–700.

    Article  Google Scholar 

  • Song S, Miller KD, Abbott LF (2000) Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neurosci. 3: 919–926.

    CAS  PubMed  Google Scholar 

  • Toni N, Buchs P-A, Nikonenko I, Bron CR, Muller D (1999) LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402: 421–425.

    CAS  PubMed  Google Scholar 

  • Tresch MC, Kiehn O (2002) Synchronization of motor neurons during locomotion in the neonatal rat: Predictors and mechanisms. J. Neurosci. 22: 9997–10008.

    CAS  PubMed  Google Scholar 

  • Tyzio R, Represa A, Jorquera I, Ben-Ari Y, Gozlan H, Aniksztejn L (1999) The establishment of GABAergic and glutamatergic synapses on CA1 pyramidal neurons is sequential and correlates with the development of the apical dendrite. J. Neurosci. 19: 10372–10382.

    CAS  PubMed  Google Scholar 

  • Usrey WM, Reid RC (1999) Synchronous activity in the visual system. Annu. Rev. Physiol. 61: 435–456.

    Article  CAS  PubMed  Google Scholar 

  • Wise SP (1996) The role of the basal ganglia in procedural memory. Semin. Neurosci. 8: 39–46.

    Article  Google Scholar 

  • Zhigulin VP, Rabinovich MI, Huerta R, Abarbanel HDI (2003) Robustness and enhancement of neural synchronization by activity-dependent coupling. Phys. Rev. E 67: 021901.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.-M. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chao, TC., Chen, CM. Learning-Induced Synchronization and Plasticity of a Developing Neural Network. J Comput Neurosci 19, 311–324 (2005). https://doi.org/10.1007/s10827-005-2653-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-005-2653-4

Keywords

Navigation