Skip to main content
Log in

Two-dimensional analytical model of threshold voltage and drain current of a double-halo gate-stacked triple-material double-gate MOSFET

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We have developed a two-dimensional analytical model for the channel potential, threshold voltage, and drain-to-source current of a symmetric double-halo gate-stacked triple-material double-gate metal–oxide–semiconductor field-effect transistor (MOSFET). The two-dimensional Poisson’s equation is solved to obtain the channel potential. For accurate modeling of the device, fringing capacitance and effective surface charge are considered. The basic drift–diffusion equation is used to model the drain-to-source current. The midchannel potential of the device is used instead of the surface potential in the current modeling, considering the fact that the punch-through current is not confined only to the surface in a fully depleted MOSFET. An expression for the pinch-off voltage is derived to model the drain current in the saturation region accurately. Various short-channel effects such as drain-induced barrier lowering, gate leakage, threshold voltage, and roll-off have also been investigated. This structure shows excellent ability to suppress various short-channel effects. The results of the proposed model are validated against data obtained from a commercially available numerical device simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ernst, T., Cristoloveanu, S., Ghibaudo, G., Ouisee, T., Horiguchi, S., Ono, Y., Takahashi, Y., Murase, K.: Ultimately thin double-gate SOI MOSFETs. IEEE Trans. Electron Devices 50, 830–838 (2003)

    Article  Google Scholar 

  2. Suzuki, K., Tosaka, Y., Tanaka, T., Horie, H., Arimoto, Y.: Scaling theory of double-gate SOI MOSFETs. IEEE Trans. Electron Devices 40, 2326–2329 (1993)

    Article  Google Scholar 

  3. Lu, H., Taur, Y.: An analytical potential model for symmetric and asymmetric DG MOSFETs. IEEE Trans. Electron Devices 53, 1161–1168 (2007)

    Google Scholar 

  4. Chen, Q., Harrell II, E.M., Meindl, J.D.: A physical short-channel threshold voltage model for undoped symmetric double-gate MOSFETs. IEEE Trans. Electron Devices 50(7), 1631–1637 (2003)

    Article  Google Scholar 

  5. Taur, Y.: An analytical solution to a double-gate MOSFET with undoped body. IEEE Trans. Electron Devices 21(5), 245–247 (2002)

    Article  Google Scholar 

  6. Tsormpatzoglou, A., Dimitriadis, C.A., Clerc, R., Pananakakis, G.: Threshold voltage model for short-channel undoped symmetrical double-gate MOSFETs. IEEE Trans. Electron Devices 55(9), 2512–2516 (2008)

    Article  Google Scholar 

  7. Cerdeira, A., Moldovan, O., Iniguez, B., Estrada, M.: Modeling of potentials and threshold voltage for symmetric doped double-gate MOSFETs. Solid State Electron. 52(5), 830–837 (2008)

    Article  Google Scholar 

  8. Reddy, G.V., Kumar, M.J.: A new dual-material double-gate (DMDG) nanoscale SOI MOSFET-two-dimensional analytical modeling and simulation. IEEE Trans. Nanotechnol. 4, 260–268 (2005)

    Article  Google Scholar 

  9. Sarkhel, S., Naha, S., Sarkar, S.K.: Reduced SCEs in fully depleted dual-material double-gate (DMDG) SON MOSFET: analytical modeling and simulation. Int. J. Sci. Eng. Res. 3, 1–5 (2012)

    Google Scholar 

  10. Pal, A., Sarkar, A.: Analytical study of dual material surrounding gate MOSFET to suppress short-channel effects (SCEs). Eng. Sci. Technol. 17(4), 205–212 (2014)

  11. Li, C., Zhuang, Y., Han, R.: Cylindrical surrounding-gate MOSFETs with electrically induced source/drain extension. Microelectron. J. 42, 341–346 (2011)

    Article  Google Scholar 

  12. Sarkar, A., De, S., Sarkar, C.K.: Asymmetric halo and single-halo dual-material gate and double halo double material gate n-MOSFETs characteristic parameter modeling. Int. J. Numer. Model. 26, 41–55 (2013)

    Article  Google Scholar 

  13. Dhanaselvama, P.S., Balamurugana, N.B.: Analytical approach of a nanoscale triple-material surrounding gate (TMSG) MOSFETs for reduced short-channel effects. Microelectron. J. 44, 400–404 (2013)

    Article  Google Scholar 

  14. Razavi, P., Orouji, A.A.: Nanoscale triple material double gate (TM-DG) MOSFET for improving short channel effects. In: International Conference on Advances in Electronics and Microelectronics, pp. 11–14 (2008)

  15. Tiwari, P.K., Dubey, S., Singh, M., Jit, S.: A two-dimensional analytical model for threshold voltage of short-channel triple-material double gate metal-oxide-semiconductor field effect transistor. J. Appl. Phys. 108, 074508 (2010)

    Article  Google Scholar 

  16. Inani, A., Rao, R.V., Cheng, B., Woo, Z.: Gate stack architecture analysis and channel engineering in deep sub-micron MOSFETs. Jpn. J. Appl. Phys. 38, 2266 (1999)

    Article  Google Scholar 

  17. Cheng, B., Cao, M., Rao, R., Inani, A., Voorde, P.V., Greene, W.M., Stork, J.M.C., Yu, Z., Zeitzoff, P.M., Woo, J.C.S.: The impact of high-k gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs. IEEE Trans. Electron Devices 46, 1537–1544 (1999)

    Article  Google Scholar 

  18. Tsividis, Y.: Operation and Modelling of the MOS Transistor, 2nd edn. McGraw-Hill, New York (1989)

    Google Scholar 

  19. Pradhan, K.P., Mohapatra, S.K., Agarwal, P.K., Sahu, P.K., Behera, D.K., Mishra, J.: Symmetric DG-MOSFET with gate and channel engineering: a 2-D simulation study. Microelectron. Solid State Electron. 2, 1–9 (2013)

    Google Scholar 

  20. Bentrcia, T., Djeffal, F., Benhaya, A.H.: Continuous analytic I-V model for GS DG MOSFETs including hot-carrier degradation effects. J. Semicond. 33, 014001 (2012)

  21. Park, H.J., Ko, P.K., Hu, C.: A charge sheet capacitance model of short channel MOSFET’s for spice. IEEE Trans. Comput. Aided Des. 10(3), 376–389 (1991)

    Article  Google Scholar 

  22. Young, K.K.: Short channel effect in fully depleted SOI MOSFETs. IEEE Trans. Electron Devices 36, 399–402 (1989)

    Article  Google Scholar 

  23. Yan, R.H., Ourmazd, A., Lee, K.F.: Scaling the Si MOSFET: from bulk to SOI. IEEE Trans. Electron Devices 39, 1704–1710 (1992)

    Article  Google Scholar 

  24. Arora, N.D.: MOSFET Models for VLSI Circuits Simulation. Springer, New York (1993)

    Book  Google Scholar 

  25. Sodini, C.G., Ko, P.-K., Moll, J.L.: The effect of high fields on MOS device and circuit performance. IEEE Trans. Electron Devices 31, 1386–1393 (1984)

    Article  Google Scholar 

  26. Akers, A.: The effect of field dependent mobility on the threshold voltage of a small geometry MOSFET. Solid State Electron. 23, 173–175 (1989)

    Article  Google Scholar 

  27. Merckel, G.: CAD Models of MOSFETs. Process and Device Modeling for Integrated Circuit Design. Noordoff, Leyden (1977)

    Google Scholar 

  28. Hamid, H.A.E., Guitart, J.R., Iniguez, B.: Analytical model of the threshold voltage and subthreshold swing of undoped cylindrical gate-all-around-based MOSFETs. IEEE Trans. Electron Devices 54, 572–579 (2007)

    Article  Google Scholar 

  29. Kumar, A., Kedzierski, J., Laux, S.E.: Quantam-based simulation analysis of scaling in ultrathin body device structures. IEEE Trans. Electron Devices 52, 614–617 (2005)

    Article  Google Scholar 

  30. Neaman, A.D.: Semiconductor Physics and Devices. Tata Mcgraw-Hill, New Delhi (1992)

    Google Scholar 

  31. Sverdrup, P.G., Sinha, S., Asheghi, M., Uma, S., Goodson, K.E.: Measurement of ballistic phonon conduction near hotspots in silicon. Appl. Phys. Lett. 78(21), 3331–3333 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samia Subrina.

Appendices

Appendix 1

The expressions for \(G_{j}\) and \(H_{j}\) (\(j=1,2,3,4,5\)) are listed below:

$$\begin{aligned} G_1= & {} \frac{1}{2\sinh \left( {\tau L} \right) }\left[ V_{\mathrm{FD}} +V_{\mathrm{bi}}+V_{\mathrm{DS}} +\frac{\alpha _5}{\tau ^{2}}\right. \nonumber \\&\left. -\left( V_{\mathrm{bi}}+V_{\mathrm{FS}}+\frac{\alpha _1}{\tau ^{2}} \right) \hbox {e}^{-\tau L}\right. \nonumber \\&\left. +\left( {\frac{\alpha _1 -\alpha _2 }{\tau ^{2}}} \right) \cosh \left\{ {\tau \left( L_2+L_3+L_4+L_5\right) } \right\} \right. \nonumber \\&\left. +\left( \frac{\alpha _2-\alpha _3}{\tau ^{2}} \right) \cosh \left\{ \tau \left( L_3+L_4+L_5\right) \right\} \right. \nonumber \\&\left. +\left( \frac{\alpha _3-\alpha _4}{\tau ^{2}}\right) \cosh \left\{ \tau \left( L_4+L_5\right) \right\} \right. \nonumber \\&\left. +\left( \frac{\alpha _4-\alpha _5}{\tau ^{2}}\right) \cosh \left( \tau L_5\right) \right] , \end{aligned}$$
(81)
$$\begin{aligned} G_2= & {} G_1-\left( \frac{\alpha _1 -\alpha _2 }{2\tau ^{2}} \right) \hbox {e}^{-\tau L_1}, \end{aligned}$$
(82)
$$\begin{aligned} G_3= & {} G_1 -\left( \frac{\alpha _1 -\alpha _2 }{2\tau ^{2}} \right) \hbox {e}^{-\tau L_1}\nonumber \\&-\left( \frac{\alpha _2 -\alpha _3 }{2\tau ^{2}}\right) \hbox {e}^{-\tau \left( L_1+L_2\right) }, \end{aligned}$$
(83)
$$\begin{aligned} G_4= & {} G_1 -\left( \frac{\alpha _1 -\alpha _2 }{2\tau ^{2}} \right) \hbox {e}^{-\tau L_1 }-\left( {\frac{\alpha _2 -\alpha _3 }{2\tau ^{2}}} \right) \hbox {e}^{-\tau \left( {{L}_1 +{L}_2 } \right) }\nonumber \\&-\left( {\frac{\alpha _3 -\alpha _4 }{2\tau ^{2}}} \right) \hbox {e}^{-\tau \left( {{L}_1 +{L}_2 +{L}_3 } \right) }, \end{aligned}$$
(84)
$$\begin{aligned} G_5= & {} G_1 -\left( {\frac{\alpha _1 -\alpha _2 }{2\tau ^{2}}} \right) \hbox {e}^{-\tau L_1}-\left( {\frac{\alpha _2 -\alpha _3 }{2\tau ^{2}}} \right) \hbox {e}^{-\tau \left( L_1+L_2\right) }\nonumber \\&-\left( {\frac{\alpha _3 -\alpha _4 }{2\tau ^{2}}} \right) \hbox {e}^{-\tau \left( L_1+L_2+L_3\right) }\nonumber \\&-\left( {\frac{\alpha _4 -\alpha _5 }{2\tau ^{2}}} \right) \hbox {e}^{-\tau \left( {{L}_1 +{L}_2 +{L}_3 +{L}_4 } \right) }, \end{aligned}$$
(85)
$$\begin{aligned} H_1= & {} V_{\mathrm{bi}}-G_1+\frac{\alpha _1}{\tau ^{2}}+V_{\mathrm{FS}}, \end{aligned}$$
(86)
$$\begin{aligned} H_2= & {} H_1-\left( \frac{\alpha _1 -\alpha _2 }{2\tau ^{2}} \right) \hbox {e}^{\tau L_1}, \end{aligned}$$
(87)
$$\begin{aligned} H_3= & {} H_1 -\left( {\frac{\alpha _1 -\alpha _2 }{2\tau ^{2}}} \right) \hbox {e}^{\tau {L}_1 }-\left( {\frac{\alpha _2 -\alpha _3 }{2\tau ^{2}}} \right) \hbox {e}^{\tau \left( {{L}_1 +{L}_2 } \right) },\nonumber \\ \end{aligned}$$
(88)
$$\begin{aligned} H_4= & {} H_1 -\left( {\frac{\alpha _1 -\alpha _2 }{2\tau ^{2}}} \right) \hbox {e}^{\tau L_1}-\left( {\frac{\alpha _2 -\alpha _3 }{2\tau ^{2}}} \right) \hbox {e}^{\tau \left( L_1+L_2\right) }\nonumber \\&-\left( \frac{\alpha _3 -\alpha _4 }{2\tau ^{2}}\right) \hbox {e}^{\tau \left( L_1+L_2+L_3\right) }, \end{aligned}$$
(89)
$$\begin{aligned} H_5= & {} H_1-\left( \frac{\alpha _1-\alpha _2}{2\tau ^{2}} \right) \hbox {e}^{\tau L_1}-\left( \frac{\alpha _2 -\alpha _3 }{2\tau ^{2}}\right) \hbox {e}^{\tau \left( L_1+L_2\right) }\nonumber \\&-\left( \frac{\alpha _3 -\alpha _4 }{2\tau ^{2}} \right) \hbox {e}^{\tau \left( {{L}_1 +{L}_2 +{L}_3 } \right) }\nonumber \\&-\left( {\frac{\alpha _4 -\alpha _5 }{2\tau ^{2}}} \right) \hbox {e}^{\tau \left( {{L}_1 +{L}_2 +{L}_3 +{L}_4 } \right) }. \end{aligned}$$
(90)

Appendix 2

The expressions for \({V}_{\mathrm{thL}}\) and \(U_{1}\)\(U_{7}\) are given below:

$$\begin{aligned} V_{\mathrm{thL}}= & {} \frac{{qN}_{\mathrm{eff}}}{\epsilon _{\mathrm{Si}} \tau ^{2}}+V_{\mathrm{fb2}} +2\varphi _\mathrm{F}, \end{aligned}$$
(91)
$$\begin{aligned} U_1= & {} \frac{V_1 \left( {\hbox {e}^{-\tau {L}}-1} \right) }{2\sinh \left( {\tau {L}} \right) }-\frac{{V}_6 \left( {\hbox {e}^{-\tau {L}}-1} \right) }{\sinh \left( {\tau {L}} \right) }-V_6\nonumber \\&-\frac{{V}_{\mathrm{FD}} ^{\mathrm{th}}\left( {\hbox {e}^{-\tau {L}}-1} \right) }{2\left\{ {\sinh \left( {\tau {L}} \right) } \right\} ^{2}} -\frac{{V}_{\mathrm{FD}}^{\mathrm{th}}}{2\sinh \left( {\tau {L}} \right) }, \end{aligned}$$
(92)
$$\begin{aligned} U_2= & {} \left\{ {\frac{\left( {\hbox {e}^{-\tau L}-1} \right) }{2\sinh \left( \tau L\right) }}\right\} ^{2}, \end{aligned}$$
(93)
$$\begin{aligned} U_3= & {} V_1V_6-V_6^{2}, \end{aligned}$$
(94)
$$\begin{aligned} U_4= & {} \frac{2V_1V_{\mathrm{FD}}^{\mathrm{th}}}{\sinh \left( {\tau L} \right) }+4\left[ \left\{ \frac{V_{\mathrm{FD}}^{\mathrm{th}}}{2\sinh \left( {\tau L}\right) }\right\} ^{2}+\frac{V_6V_{\mathrm{FD}} ^{\mathrm{th}}}{\sinh \left( \tau L\right) }\right] ,\nonumber \\ \end{aligned}$$
(95)
$$\begin{aligned} U_5= & {} V_{\mathrm{fb1}}+2\varphi _\mathrm{F}+\gamma \sqrt{2\varphi _\mathrm{F}}, \end{aligned}$$
(96)
$$\begin{aligned} U_6= & {} \frac{2{V}_{\mathrm{FD}}^{\mathrm{th}}\hbox {e}^{-\tau L}}{\left\{ \sinh \left( \tau L\right) \right\} ^{2}}-\frac{4V_6 \hbox {e}^{-\tau L}}{\sinh \left( \tau L\right) }-\frac{2V_1\hbox {e}^{-\tau L}}{\sinh \left( \tau L\right) }, \end{aligned}$$
(97)
$$\begin{aligned} U_7= & {} \left\{ \frac{\hbox {e}^{-\tau L}}{\sinh \left( \tau L\right) }\right\} ^{2}, \end{aligned}$$
(98)
$$\begin{aligned} U_8= & {} \frac{2\hbox {e}^{-\tau L}\left( \hbox {e}^{-\tau L}-1 \right) }{\left\{ \sinh \left( {\tau {L}} \right) \right\} ^{2}}+\frac{2\hbox {e}^{-\tau L}}{\sinh \left( \tau {L}\right) }, \end{aligned}$$
(99)

where \(V_{\mathrm{FD}}^{\mathrm{th}}=V_{\mathrm{FD}}\) at \(V_{\mathrm{GS}}=V_{\mathrm{th}}\) and \(V_{\mathrm{thL}}\) is the long-channel threshold voltage, which is independent of channel length.

$$\begin{aligned} V_{j}= & {} V_{\mathrm{bi}}+\frac{{qN}_{\mathrm{eff}}}{\epsilon _{\mathrm{Si}} \tau ^{2}}+V_{\mathrm{fb}j}; \quad j=1,2,3,4,5, \end{aligned}$$
(100)
$$\begin{aligned} V_6= & {} \frac{1}{2\sinh \left( {\tau L}\right) }\left[ V_{\mathrm{DS}}+V_5 -V_1 \hbox {e}^{-\tau L}\right. \nonumber \\&\left. +(V_1-V_2)\cosh \left\{ \tau \left( L_2+L_3+L_4+L_5\right) \right\} \right. \nonumber \\&\left. +(V_2-V_3)\cosh \left\{ \tau \left( L_3+L_4+L_5 \right) \right\} \right. \nonumber \\&\left. +(V_3-V_4)\cosh \left\{ \tau \left( L_4 +L_5\right) \right\} \right. \nonumber \\&\left. +(V_4-V_5)\cosh \left( \tau L_5\right) \right] . \end{aligned}$$
(101)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmud, M.A., Subrina, S. Two-dimensional analytical model of threshold voltage and drain current of a double-halo gate-stacked triple-material double-gate MOSFET. J Comput Electron 15, 525–536 (2016). https://doi.org/10.1007/s10825-016-0820-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0820-7

Keywords

Navigation