Skip to main content
Log in

FT-IR, Raman, and NMR Spectroscopy and DFT Theory of Glimepiride Molecule as a Sulfonylurea Compound

  • Published:
Journal of Applied Spectroscopy Aims and scope

A Correction to this article was published on 20 September 2018

This article has been updated

The glimepiride molecule was experimentally characterized using vibrational (FT-IR and laser-Raman) and NMR chemical shift spectroscopy. The molecule optimized structure, vibrational wavenumbers, and 1H and 13C NMR isotropic chemical shifts were theoretically obtained with the DFT/B3LYP method at a 6-311++G(d,p) basis set. The theoretical geometric parameters, vibrational wavenumbers, and NMR che mical shifts were found to be consistent with experimental data and similar spectral results in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

  • 20 September 2018

    The first author's name is incorrect. The name should read T. Özdemir.

References

  1. Türkiye Endokrinoloji ve Metabolizma Derneği. Diabetes Mellitus ve Komplikasyonlarının Tanı, Tedavive İzlem Kılavuzu, BAYT Bilimsel Araştırmalar Basın Yayınve Tanıtım Ltd. Şti, Miki Matbaacılık San. ve Tic. Ltd. Şti (2014).

  2. American Diabetes Association. Diabetes Care, 33, 62 (2010).

  3. Expert Committee on the Diagnosis and Classifi cation of Diabetes Mellitus Diabetes Care, 20, 1183 (1997).

  4. P. R. Njolstad, J. V. Sagen, L. Bjorkhaug, S. Odili, N. Shehadeh, D. Bakry, U. Sarici, F. Alpay, J. Molnes, A. Molven, O. Sovik, and F. M. Matschinsky, Diabetes, 52, 11, 2854 (2003).

    Article  Google Scholar 

  5. P. Odetti, S. Garibaldi, G. Noberasco, I. Aragno, S. Valentini, N. Traverso, and U. M. Marinari, Acta Diabetol., 36, 4, 179 (1999).

    Article  Google Scholar 

  6. U. Çakatay, Diabetes and Metabolism, 31, 6, 551 (2005).

    Article  Google Scholar 

  7. T. Hamaguchi, T. Hirose, H. Asakawa, Y. Itoh, K. Kamado, K. Tokunaga, K. Tomita, H. Masuda, N. Watanabe, and M. Namba, Diabetes Res. Clin. Pract., 66, 129 (2004).

    Article  Google Scholar 

  8. A. Brayfield, Martindale: The Complete Drug Reference, 35 ed., CD ROM, The Pharmaceutical Press, London (2007).

  9. http://www.sanofi-aventis.ca/products/en/amaryl.pdf (accessed 10.09.09).

  10. S. N. Davis, J. Diabetes Complicat., 18, No. 6, 367 (2004).

    Article  Google Scholar 

  11. T. G. Skillman and J. M. Feldman, Am. J. Med., 70, 361 (1981).

    Article  Google Scholar 

  12. H. E. Lebovitz and M. N. Feinglos, Diabetes Care, 1, 189 (1978).

    Article  Google Scholar 

  13. G. Arumugam, P. Manjula, and N. Paari, J. Acute Disease, 3, No. 2, 196 (2013).

    Article  Google Scholar 

  14. M. Remko, J. Mol. Struct. Theochem., 897, 73 (2009).

    Article  Google Scholar 

  15. M. Karakaya, M. Kurekci, B. Eskiyurt, Y. Sert, and C. Cırak, Spectrochim. Acta, A, 135, 137 (2015).

    Article  Google Scholar 

  16. M. Iwata, H. Nagase, T. Endo, and H. Ueda, Acta Crystallogr., C53, 329 (1997).

    Google Scholar 

  17. L. A. D. Maria Lestari, and G. Indrayanto, Profi les of Drug Substances, Excipients, and Related Methodology, 36, 1871 (2011).

  18. M. J. O'Neil, The Merck Index, Merck & Co.,Inc., New Jersey (2001).

    Google Scholar 

  19. M. Karakaya, Y. Sert, M. Kürekçi, B.Eskiyurt, and Ç. Çırak, J. Mol. Struct., 87, 1095 (2015).

    Google Scholar 

  20. R. Anitha, M. Gunasekaran, S. Suresh Kumar, S. Athimoolam, and B. Sridhar, Spectrochim. Acta, A, 150, 488 (2015).

    Article  Google Scholar 

  21. Y. Sert, B. Miroslaw, Ç. Çırak, H. Doğan, D. Szulczyk, and M. Struga, Spectrochim. Acta A, 128, 91 (2014).

    Article  ADS  Google Scholar 

  22. F. A. M. Al-Omary, M. Karakaya, Y. Sert, N. G.Haress, A. A. El-Emam, and Ç. Çırak, J. Mol. Struct., 1076, 664 (2014).

    Article  ADS  Google Scholar 

  23. E. Taşal and M. Kumalar, Spectrochim. Acta A, 95, 282 (2012).

    Article  ADS  Google Scholar 

  24. R. Brause, H. Fricke, M. Gerhards, R. Weinkauf, and K. Kleinermanns, Chem. Phys., 43, 327 (2006).

    Google Scholar 

  25. S. Murugavel, C. S. Jacob, P. Stephen, R. Subashini, H. R. Reddy, and D. Krishnan, J. Mol. Struct., 134, 1122 (2016).

    Google Scholar 

  26. A. Barakat, S. M. Soliman. A. M. Al-Majid, G. Lotfy, H. A. Ghabbour, H. K. Fun, S. Yousuf, M. I. Choudhary, and A. Wadood, J. Mol. Struct., 365, 1098 (2015).

    Google Scholar 

  27. H. Gökçe, N. Öztürk, Ü. Ceylan, Y. Alpaslan, and B. Alpaslan, Spectrochim. Acta, A, 163, 170 (2016).

    Article  ADS  Google Scholar 

  28. A. D. Becke, J. Chem. Phys., 98, 5648 (1993).

    Article  ADS  Google Scholar 

  29. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785 (1988).

    Article  ADS  Google Scholar 

  30. A. Frish, A. B. Nielsen, and A. J. Holder, Gauss View User Manual, Gaussian Inc., Pittsburg, PA (2001).

    Google Scholar 

  31. Gaussian 09, Revision, A.1, Gaussian Inc., Wallingford CT (2009).

  32. http://www.gaussian.com/g_prod/gv5.htm (accessed 10.08.2016).

  33. Y. B. S. Rao, M. V. S. Prasad, N. U. Sri, and V. Veeraiah, J. Mol. Struct., 567, 1108 (2016).

    Google Scholar 

  34. G. Keresztury, S. Holly, J. Varga, G. Besenyei, A. Y. Wang, and J. R. Durig, Spectrochim. Acta, A, 49, 2007(1993).

    Google Scholar 

  35. G. Keresztury, In: Raman Spectroscopy: Theory in Handbook of Vibrational Spectroscopy, Eds. J. M. Chalmers, P. R. Griffith, John Wiley & Sons Ltd., New York (2002).

    Google Scholar 

  36. J. Chocholousova, V. V. Spirko, and P. Hobza, Chem. Phys., 6, 37 (2004).

    Google Scholar 

  37. N. Sundaaraganesan, S. Ilakiamani, H. Saleem, P. M. Wojciechowski, and D. Michalska, Spectrochim. Acta, A, 61, 2995 (2005).

    Article  Google Scholar 

  38. N. B. Colthup, L. H. Daly, and E. Wiberley, Introduction to Infrared and Raman Spectroscopy, Academic Press, New York (1964).

    Google Scholar 

  39. L. J. Bellamy, The Infrared Spectra of Complex Molecules, 3rd ed., Willey, New York (1975).

    Book  Google Scholar 

  40. R. M. Silverstein and F. X. Webster, Spectroscopic Identifi cation of Organic Compound, Willey, New York (1998).

    Google Scholar 

  41. J. B. Lambert, H. F. Shurvell, and R. G. Cooks, Introduction to Organic Spectroscopy, Macmillan, New York (1987).

    Google Scholar 

  42. B. H. Stuart, Infrared Spectroscopy: Fundamentals and Applications, Willey, New York (2004).

    Book  Google Scholar 

  43. M. Barthes, G. De Nunzio, and G. Riber, Synth. Methods, 76, 337 (1996).

    Article  Google Scholar 

  44. S. Gunasekaran, P. Arunbalaji, S. Seshadri, and S. Muthu, Indian J. Pure Appl. Phys., 46, 162 (2008).

    Google Scholar 

  45. G. Varsanyi and S. Szoke, Vibrational Spectra of Benzene Derivatives, Academic Press, New York (1969).

    Google Scholar 

  46. N. P. G. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures, Willey, New York (1994).

    Google Scholar 

  47. K. R. Ambujakshan, V. S. Madhavan, H. T.Varghese, C. Y. Panicker, O. Temizarpaci, B. Tekiner-Gulbas, and I. Yildiz, Spectrochim. Acta, A, 69, 782 (2008).

    Article  ADS  Google Scholar 

  48. G. Varsanyi, Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives, Vol. I, II, Academic Kiado, Budapest (1973).

  49. B. Smith, Infrared Spectral InterpretationA Systematic Way, CRC Press, New York (1999).

    Google Scholar 

  50. J. Swaminathan, M. Ramalingam, V. Sethuraman, N. Sundaraganesan, and S. Sebastain, Spectrochim. Acta A, 73, 593 (2009).

    Article  ADS  Google Scholar 

  51. G. Socrates, Infrared Characteristic Group Frequencies, Willey, New York (1981).

    Google Scholar 

  52. M. S. Alam and D.-U. Lee, J. Mol. Struct., 174, 1128 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Özdemi.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 85, No. 3, p. 517, May–June, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özdemi, T., Gökce, H. FT-IR, Raman, and NMR Spectroscopy and DFT Theory of Glimepiride Molecule as a Sulfonylurea Compound. J Appl Spectrosc 85, 560–572 (2018). https://doi.org/10.1007/s10812-018-0687-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-018-0687-4

Keywords

Navigation