Skip to main content

Advertisement

Log in

Soil algal communities inhabiting zinc and lead mine spoils

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Algal communities inhabiting four calamine mine spoils differing in time since cessation of exploitation and loaded with high concentrations of zinc (20,284–61,599 μg g−1 soil DW), lead (2,620–3,885 μg g−1 DW) and cadmium (104–232 μg g−1 DW) were studied. In dump soils of slightly alkaline pH (7.28–7.52) and low nutrient (\( P - PO^{{3 - }}_{4} \), \( N - NH^{ + }_{4} \), \( N - NO^{ - }_{3} \)) concentrations, chlorophyll a content ranged from 0.41 to 2.27 μg g−1 soil DW. In total, 23 algal species were recorded. Chlorophyta were the dominant taxonomic group (42–55% of all identified species) followed by Cyanobacteria (28–36%) and Heterokontophyta (13–21%). The highest species richness (18) was observed in the oldest dump (120 years old) with natural succession, while in younger dumps it was lower (11–15). Total algal abundance ranged between 5.5 and 19.1 × 102 ind. g−1 soil DW, and values of Margalef’s diversity indices (1.59–2.25) were low. These results may suggest that both high concentrations of heavy metals and low nutrient content influenced the algal communities in all the dumps studied. The differences in algal microflora observed between tailing dumps may indicate that habitat quality improved with time and that algae isolated from Zn/Pb-loaded soils may be Zn/Pb-resistant ecotypes of ubiquitous species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agbenin JO (1998) Phosphate-induced zinc retention in a tropical semi-arid soil. J Soil Sci 49:693–700

    Article  CAS  Google Scholar 

  • Bailey D, Andrew PM, Rosowski JR (1973) Aggregation of soil particle by algae. J Phycol 9:99–101

    Google Scholar 

  • Baker AJM (1987) Metal tolerance. New Phytol 106:93–111

    Article  CAS  Google Scholar 

  • Bianchi F, Acri F, Aubry FB, Berton A, Boldrin A, Camatti E, Cassin D, Comaschi A (2003) Can plankton communities be considered as bio-indicators of water quality in the Lagoon of Venice? Mar Pollut Bull 46:964–971

    Article  PubMed  CAS  Google Scholar 

  • Blanck H, Wängberg S-Å (1988) Induced community tolerance in marine periphyton established under arsenate stress. Can J Fish Aquat Sci 45:1816–1819

    Google Scholar 

  • Bold HC (1949) The morphology of Chlamydomonas chlamydogama, sp. nov. Bull Torrey Bot Club 76:101–108

    Article  Google Scholar 

  • Devilla RA, Brown MT, Donkin M, Readman JW (2005) The effect of a PSII inhibitor on phytoplankton community structure as assessed by HPLC pigment analyses, microscopy and flow cytometry. Aquat Toxicol 71:25–38

    Article  PubMed  CAS  Google Scholar 

  • Dor I, Danin A (2001) Life strategies of Microcoleus vaginatus—cyanophyte forming crust on desert. In: Elster J, Lhotský O (eds) Proceedings of the International Conference: Algae and extreme environments. Ecology and Physiology. 11–16 September 2000, Trebon, Czech Republic

  • El-Enany AE, Issa AA (2000) Cyanobacteria as a biosorbent of heavy metals in sewage water. Environ Toxicol Pharmacol 8:95–101

    Article  PubMed  CAS  Google Scholar 

  • Elster J, Lukešová A, Svoboda J, Kopecky J, Kanda H (1999) Diversity and abundance of soil algae in the polar desert, Sverdrup Pass, central Ellemere Island. Polar Rec 35(194):231–254

    Article  Google Scholar 

  • Ettl H, Gärtner G (1995) Syllabus der Boden-, Luft- und Flechtenalgen. Fisher, Stuttgart

  • Garcia-Meza JV, Barrangue C, Admiraal W (2005) Biofilm formation by algae as a mechanism for surviving on mine tailings. Environ Toxicol Chem 24:573–581

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Meza JV, Carrillo-Chavez A, Morton-Bermea O (2006) Sequential extractions on mine tailings samples after and before bioassays: implications on the speciation of metals during microbial re-colonization. Environ Geol 49(3):437–448

    Article  CAS  Google Scholar 

  • Godzik B (1993) Heavy metals content in plants from zinc dumps and reference areas. Pol Bot Stud 5:113–132

    Google Scholar 

  • Grodzińska K, Korzeniak U, Szarek-Łukaszewska G, Godzik B (2000) Colonization of mine spoils in southern Poland—preliminary studies on vegetation, seed rain and seed bank. Fragm Florist Geobot 45:123–145

    Google Scholar 

  • Hawkes CV, Flechtner VR (2002) Biological soil crusts in a xeric Florida shrubland: composition, abundance, and spatial heterogeneity of crusts with different disturbance histories. Microb Ecol 43:1–12

    Article  PubMed  CAS  Google Scholar 

  • Hindák F (1996) Key to the unbranched filamentous green algae (Ulotrichineae, Ulotrichales, Chlorophyceae). Bull Slovensk Bot Spol SAV, Bratislava

  • Hoffmann L (1989) Algae of terrestrial habitats. Bot Rev 55:77–105

    Article  Google Scholar 

  • Johansen JR (1993) Cryptogamic crusts of semiarid and arid lands of North America. J Phycol 29:140–147

    Article  Google Scholar 

  • Johansen JR, Shubert LE (2001) Algae in soils. Nowa Hedwigia, Beiheft 123:295–304

  • Kabata-Pendias A, Pendias H (1999) Biogeochemia pierwiastków śladowych. Wyd Naukowe PWN, Warsaw

  • King JM, Ward CH (1977) Distribution of edaphic algae as related to land usage. Phycologia 16:23–30

    Google Scholar 

  • Lukešová A (1993) Soil algae in four secondary successional stages on abandoned fields. Algolog Stud 71:81–102

    Google Scholar 

  • Lukešová A (2001) Soil algae in brown coal and lignite post-mining areas in central Europe (Czech Republic and Germany). Restor Ecol 9:341–350

    Article  Google Scholar 

  • Lukešová A, Hoffmann L (1996) Soil algae from acid impacted forest areas of the Krušné Hory Mts. 1. Algal communities. Vegetatio 125:123–136

    Article  Google Scholar 

  • Lukešová A, Komárek J (1987) Succession of soil algae on dumps from strip coal-mining in the Most region (Czechoslovakia). Folia Geobot Phytotaxon 22:355–363

    Google Scholar 

  • Margalef R (1958) Information theory in ecology. Gen Syst 3:36–71

    Google Scholar 

  • Mataloni G, Tell G, Wynn-Williams DD (2000) Structure and diversity of soil algal communities from Cierva Point (Antarctic Penisula). Polar Biol 23:205–211

    Article  Google Scholar 

  • Maxwell CD (1991) Floristic changes in soil algae and cyanobacteria in reclaimed metal-contaminated land at Sudbury, Canada. Water Air Soil Pollut 60:381–393

    Article  CAS  Google Scholar 

  • Mbila MO, Thompson ML (2004) Plant-available zinc and lead in mine spoils and soils at the mines of Spain, Iowa. J Environ Qual 33:553–558

    Article  PubMed  CAS  Google Scholar 

  • Metting B (1981) The systematics and ecology of soil algae. Bot Rev 47:195–312

    Article  CAS  Google Scholar 

  • Nagy ML, Johansen JR, St Clair LL, Webb BL (2005) Recovery patterns of microbiotic soil crusts 70 years after arsenic contamination. J Arid Environ 63:304–323

    Article  Google Scholar 

  • Pawlik-Skowrońska B (2001) Phytochelatin production in freshwater algae Stigeoclonium in response to heavy metals contained in mining water; effects of some environmental factors. Aquat Toxicol 52:241–249

    Article  PubMed  Google Scholar 

  • Pawlik-Skowrońska B (2002) Correlations between toxic Pb effects and production of Pb-induced thiol peptides in the microalga Stichococcus bacillaris. Environ Pollut 119:119–127

    Article  PubMed  Google Scholar 

  • Pawlik-Skowrońska B (2003) Resistance, accumulation and allocation of zinc in two ecotypes of the green alga Stigeoclonium tenue Kűtz. coming from habitats of different heavy metal concentrations. Aquat Bot 75:189–198

    Article  Google Scholar 

  • Pawlik-Skowrońska B, Skowroński T (2001) Freshwater algae. In: Prasad MNV (eds) Metals in the environment: analysis by biodiversity. Dekker, New York

    Google Scholar 

  • Pluis JLA, de Winder B (1989) Spatial patterns in algae colonization of dune blowouts. Catena 16:499–506

    Article  Google Scholar 

  • Ram N, Verloo M (1985) Effect of various organic materials on the mobility of heavy metals in soil. Environ Pollut (Ser B) 10:241–248

    Article  CAS  Google Scholar 

  • Shehata FHA, Whitton BA (1982) Zinc tolerance in strains of the blue-green algal Anacystis nidulans. Br Phycol J 17:5–12

    Article  Google Scholar 

  • Shubert LE, Starks TL (1979) Algal succession on orphaned coal mine spoils. In: Wali MK (eds) Ecology and coal resource development. Pergamon, New York. pp. 661–669

    Google Scholar 

  • Shubert LE, Rusu A-M, Bartok K, Moncrieff CB (2001) Distribution and abundance of edaphic algae adapted to highly acidic, metal rich soil. In: Elster J, Lhotsky O (eds) Algae and extreme environments, Nova Hedwigia, Beiheft 123:411–425

  • Sieminiak D (1984) Epipelic algae in marginal parts of the Przeczyce reservoir and of neighbouring sectors of the River Czarna Przemsza (Upper Silesia). Algae in periodically emerged zone. Acta Hydrobiol 2:135–144

    Google Scholar 

  • Sieminiak D (1996) Evaluation of algal biomass in the soil of a barren land. Ekol Pol 44:225–243

    Google Scholar 

  • Simons J, Van Beem AP, De Vries PJR (1986) Morphology of the prostate thallus of Stigeoclonium (Chlorphyceae, Chaetophorales) and its taxonomic implications. Phycologia 25:210–220

    Google Scholar 

  • Starks TL, Shubert LE (1979) Algal colonization on a reclaimed surface-mined area in Western North Dakota. In: Wali MK (eds) Ecology and coal resource development. Pergamon, New York. pp. 652–660

    Google Scholar 

  • Starks TL, Shubert LE (1982) Colonization and succession of algae and soil-algal interactions associated with disturbed areas. J Phycol 18:99–107

    Article  Google Scholar 

  • Starmach K (1966) Flora słodkowodna Polski. Tom 2. Cyanophyta - Sinice, Glaucophyta - Glaukofity. Wyd Naukowe PWN, Warszawa

  • Starmach K, Siemińska J (1979) Blue-green algae from soil samples collected at various places in Europe. Arch Hydrobiol/ Suppl.56, Algolog Studies 22:1–23

    Google Scholar 

  • Staub R (1961) Untersuchungen an der Blaualge Oscillatoria rubescens. DC. Schweiz Z Hydrol 23:83–198

    Google Scholar 

  • Szarek-Łukaszewska G, Niklińska M (2002) Concentration of alkaline and heavy metals in Biscutella laevigata L. and Plantago lanceolata L. growing on calamine spoils (S. Poland). Acta Biologica Crac Ser Bot 44:29–38

    Google Scholar 

  • Ullrich SM, Ramsey MH, Helios-Rybicka E (1999) Total and exchangeable concentrations of heavy metals in soils near Bytom, an area of Pb/Zn mining and smelting in Upper Silesia, Poland. Appl Geochem 14:187–196

    Article  CAS  Google Scholar 

  • van den Hoek C, Mann DG, Jahns HM (2002) Algae. An introduction to Phycology. Cambridge Univ. Press, UK

    Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    CAS  Google Scholar 

  • Wierzbicka M, Szarek-Łukaszewska G, Grodzińska K (2004) Highly toxic thallium in plants from the vicinity of Olkusz (Poland). Ecotoxicol Environ Saf 59:84–88

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Lin S-L (1990) Copper tolerance and copper uptake of Lotus purshianus (Benth.) Clom and Clem. and its symbiotic Rhizobium loti derived from a copper mine waste population. New Phytol 116:531–539

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Prof. K. Grodzińska and Dr. G. Szarek-Łukaszewska for their valuable advice in sampling site selection and Dr. M. Brown (UK) for reading the manuscript and helping with English expressions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Trzcińska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trzcińska, M., Pawlik-Skowrońska, B. Soil algal communities inhabiting zinc and lead mine spoils. J Appl Phycol 20, 341–348 (2008). https://doi.org/10.1007/s10811-007-9259-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-007-9259-3

Keywords

Navigation