Skip to main content
Log in

Quantization as Selection Problem

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum systems exhibit a smaller number of energetic states than classical systems (A. Einstein, 1907, Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme, Ann. Phys. 22, 180ff). We take up the selection criterion for this in two parts. (1) The selection problem between classical and nonclassical mechanical systems is formulated in terms of possible and impossible configurations (among others, this overcomes the difficulties occurring when discussing the behavior of quantum particles in terms of paths). (2) The (nonclassical) selection of the quantum states is formulated, using recurrence relations and the energy law. The reformulation of “quantization as eigenvalue problem” in terms of “quantization as selection problem” allows one to derive Schrödinger’s stationary equation from classical mechanics through a straightforward and unique procedure; the nonstationary and multibody equations are subsequently acquired within the same frame. In contrast to the (classical) eigenvalue problem, the (nonclassical) selection problem can be formulated and solved without any reference to additional a priori assumptions on the nature of the quantum system, such as the wave-corpuscle dualism or an underlying wave equation or the existence of Planck’s finite action parameter. The existence of such an additional parameter—as the only additional one—is inherent in the procedure. Within our axiomatic-deductive approach, we modify classical mechanics only where it itself indicates an inherent limitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz, M. and Stegun, I. A. (eds.). (1964). Handbook of Mathematical Functions, NBS, Washington.

    Google Scholar 

  • d’Alembert, J. L. (1743). Traité de dynamique, David l’aine Libraire, Paris.

    Google Scholar 

  • Bach, A. (1997). Indistinguishable Classical Particles (Lecture Notes in Physics, m44), Springer, Berlin, Chap. 1.

    Google Scholar 

  • Bohr, N. (1913). On the constitution of atoms and molecules. Philosophical Magazine 26, 1ff.

    Google Scholar 

  • de Broglie, L. (1925). Recherches sur la théorie des quanta. Annales de Physique 3(10), 22.

    Google Scholar 

  • Cracknell, A. P. (1967). Applied Group Theory, Pergamon Press, Oxford, Section 2.10.

    Google Scholar 

  • Dirac, P. A. M. (1980). Why we believe in the Einstein Theory. In Symmetries in Science, B. Gruber, ed., Plenum, New York.

    Google Scholar 

  • Dyson, F. J. (1949). The radiation theories of Tomonaga, Schwinger, and Feynman. Physical. Review 75, 486–502.

    Google Scholar 

  • Einstein, A. (1905). Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annals of Physics 17, 132–148.

    CAS  Google Scholar 

  • Einstein, A. (1907). Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme. Annals of Physics 22, 180ff.

    Google Scholar 

  • Einstein, A. (1923). Bietet die Feldtheorie Möglichkeiten für die Lösung des Quantenproblems? Sitzungsberichte der Preussischen Akademie der Wissenschaften, physikalisch-mathematische Klasse (issue December 13) XXXIII, pp. 359ff.

    Google Scholar 

  • Einstein, A. (1977). Grundzüge der Relativitätstheorie, Akademie-Verlag, Berlin, p. 132.

    Google Scholar 

  • Enders, P. (1996). Huygens’ principle and the modelling of propagation. European Journal of Physics 17, 226–235.

    Google Scholar 

  • Enders, P. and Suisky, D. (2005). Über das Auswahlproblem in der klassischen Mechanik und in der Quantenmechanik. Nova Acta Leopoldina 18(Suppl), 13–17.

    Google Scholar 

  • Euler, L. (1912). Leonardi Euleri Opera Omnia sub auspiciis Societatis Scientarium Naturalium Helveticae, Ser. II, Vol. 1, P. Stäckel, ed., Teubner, Leipzig, Zurich.

  • Euler, L. (1957a). Opera Omnia, Ser. II, Vol. 5, O. J. Fleckenstein, ed., Orell Füssli, Zurich.

  • Euler, L. (1957b). Opera Omnia, Ser. II, Vol. 5, O. J. Fleckenstein, ed., Orell Füssli, Zurich.

  • Euler, L. (1926). Opera Omnia, Ser. III, Vol. 1, E. Bernoulli and R. Bernoulli, eds., Teubner, Leipzig.

  • Euler, L. (1960). Opera Omnia, Ser. III, Vols. 11 and 12, A. Speiser, ed., Orell Füssli, Zurich.

  • Faraggi, A. E. and Matone, M. (1998). The equivalence postulate of quantum mechanics. arXiv:hep-th/9809127.

  • Feynman, R. P. (1949). Space-time approach to quantum electrodynamics. Physical Review 76, 769ff.

    Google Scholar 

  • Heisenberg, W. (1925). Über quantenmechanische Umdeutung kinematischer und mechanischer Beziehungen. Zeitschrift fur Physik XXXIII, 879ff.

    Google Scholar 

  • Heisenberg, W. (1977). Physik und Philosophie, Ullstein, Frankfurt, pp. 15–27.

    Google Scholar 

  • Helmholtz, H. (1847). Über die Erhaltung der Kraft, Reimer, Berlin.

    Google Scholar 

  • Helmholtz, H. von (1911). Vorlesungen über die Dynamik discreter Massenpunkte, 2nd edn., Barth, Leipzig.

    Google Scholar 

  • Landau, L. D. and Lifschitz, E. M. (1959). Course of Theoretical Physics. Vol. 3: Quantum Mechanics, Pergamon, London, p. 6.

    Google Scholar 

  • Leibniz, G. W. (1982). Specimen Dynamicum, Meiner, Hamburg.

    Google Scholar 

  • Lübbig, H. (1999). Das Wirkungsprinzip von Maupertuis und Feynmans Wegintegral der Quantenphase. In Pierre Louis Moreau de Maupertuis. Eine Bilanz nach 300 Jahren, H. Hecht, ed., Verlag, Berlin, p. 505.

    Google Scholar 

  • Malebranche, N. (1906). Looking for the truth. In Collected Works (St. Petersburg), Vol.2, p. 426 (in Russian); cited after Grigorjan, A. T. (1985). The initial stage of the development of classical mechanics. In Investigations on the History of Physics and Mechanics 1985, Nauka, Moscow, pp. 176–223, in part., p. 193 (in Russian).

  • Maupertuis, P. L. M. de (1768). {Œ}uvres de Maupertuis, Vol. IV, Bruyset, Lyon, p. 44.

  • Messiah, A. (1999). Quantum Mechanics, Dover, New York, Section I.15.

    Google Scholar 

  • Mittelstaedt, P. (1995). Klassische Mechanik, BI –Taschenbücher, Mannheim.

  • Pauli, W. (1926). Quantentheorie. In Handbuch der Physik, Vol. 23, Section 6, H. Geiger and K. Scheel, eds., Springer, Berlin, pp. 1–278.

  • Pauli, W. (1973). Wave Mechanics (Pauli Lectures of Physics, Vol. 5), Ch. P. Enz, ed., MIT Press, Cambridge, MA, Section 35.

  • Planck, M. (1900). Zur Theorie des Gesetzes der Energieverteilung im Normalspektrum. Verhandlungen der Deutschen Physikalischen Gesellschaft 2, 237ff.

    Google Scholar 

  • Schleich, W. P. (2001). Quantum Optics in Phase Space, Wiley-VCH, Berlin, p. 282.

    Google Scholar 

  • Schrödinger, E. (1927). Abhandlungen zur Wellenmechanik, Barth, Leipzig.

    Google Scholar 

  • Schrödinger, E. (1933). The fundamental idea of wave mechanics. (Nobel award lecture, 1933). in: G. Ekspong, ed., Nobel Lectures in Physics Vol 2 1922–1941, World Scientific, Singapore, 1998, pp. 305–316.

  • Suisky, D. and Enders, P. (2001). Leibniz’s Foundation of Mechanics and the Development of 18th Century Mechanics initiated by Euler. In Proc. VII. Intern. Leibniz Congress, H. Poser, ed., Berlin-Verlag, Berlin, p. 1247.

    Google Scholar 

  • Suisky, D. and Enders, P. (2005). Dynamical Derivation of the Lorentz Transformation, German Physical Society Annual Meeting, Berlin 2005, Poster GR18.1.

  • Weizsäcker, C. F. V. (2002). Aufbau der Physik, 4th edn., DTV, München, p. 235.

    Google Scholar 

  • Weyl, H. (1950). The Theory of Groups in Quantum Mechanics, Dover, New York, Section II.8.

    Google Scholar 

  • Whittaker, E. T. and Watson, G. N. (1927). A Course of Modern Analysis, 4th ed., Cambridge University Press, Cambridge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Enders.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enders, P., Suisky, D. Quantization as Selection Problem. Int J Theor Phys 44, 161–194 (2005). https://doi.org/10.1007/s10773-005-1491-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-005-1491-5

Key Words

Navigation