Skip to main content
Log in

Distal Forelimb Kinematics in Erythrocebus patas and Papio anubis During Walking and Galloping

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

When using symmetrical gaits, terrestrial digitigrade monkeys adopt less digitigrade, i.e., more palmigrade-like, hand postures as they move with faster speeds. Accordingly, it appears that, in contrast to other mammals, digitigrady is unrelated to cursoriality in primates. However, researchers have not documented the effects of speed on distal forelimb kinematics in faster asymmetrical gaits, i.e., galloping, when ground reaction forces are typically increased owing to the decreased number of contact points during a stride, combined with higher speed. Thus, it remains possible that primates use digitigrade hand postures during these higher-speed asymmetrical gaits. We investigated 3D angles in the wrist joint and metacarpophalangeal joint of 2 habitually digitigrade terrestrial monkeys, Erythrocebus patas and Papio anubis, across a large range of walking and galloping speeds on a motorized treadmill. Nonparametric analyses reveal that angles, and therefore hand postures, are not different at the subject’s walk-gallop transition. Regression analyses show that when walking, digitigrade postures are adopted at slow speeds and more palmigrade-like postures are adopted at fast speeds. Contrary to expectations, there is little change in hand postures across galloping speeds; both subjects maintained palmigrade-like hand postures with substantial joint yield and reextension during support. These results indicate that the hands are always less digitigrade at faster speeds because the joints of the distal forelimb cannot resist the higher ground reaction forces that accompany these higher speed gaits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alexander, R. M., & Bennet-Clark, H. C. (1977). Storage of elastic strain energy in muscle and other tissues. Nature, 265, 114–117.

    Article  PubMed  CAS  Google Scholar 

  • Biewener, A. A., & Taylor, C. R. (1986). Bone strain: A determinant of gait or speed? Journal of Experimental Biology, 123, 383–400.

    PubMed  CAS  Google Scholar 

  • Biknevicius, A. R., & Reilly, S. M. (2006). Correlation of symmetrical gaits and whole body mechanics: Debunking myths in locomotor biodynamics. Journal of Experimental Zoology, 305A, 923–934.

    Article  Google Scholar 

  • Brown, J. C., & Yalden, D. W. (1973). The description of mammals—2: Limbs and locomotion of terrestrial mammals. Mammal Review, 3, 107–134.

    Article  Google Scholar 

  • Caliebe, F., Haüßler, J., Hoffmann, P., Illert, M., Schirrmacher, J., & Wiedemann, E. (1991). Cat distal forelimb joints and locomotion: An x-ray study. European Journal of Neuroscience, 3, 18–31.

    Google Scholar 

  • Carrier, D. R., Heglund, N. C., & Earls, K. D. (1994). Variable gearing during locomotion in the human musculoskeletal system. Science, 265, 651–653.

    Article  PubMed  CAS  Google Scholar 

  • Carrier, D. R., Gregersen, C. S., & Silverton, N. A. (1998). Dynamic gearing in running dogs. Journal of Experimental Biology, 201, 3185–3195.

    PubMed  CAS  Google Scholar 

  • Demes, B., Larson, S. G., Stern, J. T., Jungers, W. L., Biknevicius, A. R., & Schmitt, D. (1994). The kinetics of primate quadrupedalism: “Hind limb drive” reconsidered. Journal of Human Evolution, 26, 353–374.

    Article  Google Scholar 

  • Demes, B., Stern, J. T., Hausman, M. R., Larson, S. G., McLeod, K. J., & Rubin, C. T. (1998). Patterns of strain in the macaque ulna during functional activity. American Journal of Physical Anthropology, 106, 87–100.

    Article  PubMed  CAS  Google Scholar 

  • Farley, C. T., & Taylor, C. R. (1991). A mechanical trigger for the trot-gallop transition in horses. Science, 253, 306–308.

    Article  PubMed  CAS  Google Scholar 

  • Fleagle, J. G. (1999). Primate adaptation and evolution (2nd ed.). San Diego: Academic Press.

    Google Scholar 

  • Gonyea, W. J. (1978). Functional implications of felid forelimb anatomy. Acta Anatomica, 102, 111–121.

    PubMed  CAS  Google Scholar 

  • Gregersen, C. S., Silverton, N. A., & Carrier, D. R. (1998). External work and potential for elastic storage at the limb joints of running dogs. Journal of Experimental Biology, 201, 3197–3210.

    PubMed  CAS  Google Scholar 

  • Hanna, J. B., Polk, J. D., & Schmitt, D. (2006). Forelimb and hind limb forces in walking and galloping primates. American Journal of Physical Anthropology, 130, 529–535.

    Article  PubMed  CAS  Google Scholar 

  • Hildebrand, M. (1980). The adaptive significance of tetrapod gait selection. American Zoologist, 20, 255–267.

    Google Scholar 

  • Hildebrand, M. (1985). Walking and running. In M. Hildebrand, D. M. Bramble, K. F. Liem, & D. B. Wake (Eds.), Functional vertebrate morphology (pp. 38–57). Cambridge: Belknap Press.

    Google Scholar 

  • Howell, A. B. (1944). Speed in animals. New York: Hafner.

    Google Scholar 

  • Jenkins, F. A., & Fleagle, J. G. (1975). Knuckle-walking and the functional anatomy of the wrists in living apes. In R. H. Tuttle (Ed.), Primate functional morphology and evolution (pp. 213–227). The Hague: Mouton.

    Google Scholar 

  • Larney, E., & Larson, S. G. (2004). Compliant walking in primates: Elbow and knee yield in primates compared to other mammals. American Journal of Physical Anthropology, 125, 42–50.

    Article  PubMed  Google Scholar 

  • McGuigan, M. P., & Wilson, A. M. (2003). The effect of gait and digital flexor muscle activation on limb compliance in the forelimb of the horse Equus caballus. Journal of Experimental Biology, 206, 1325–1336.

    Article  PubMed  Google Scholar 

  • Miller, S., & Van Der Meche, F. G. A. (1975). Movements of forelimbs of cat during stepping on a treadmill. Brain Research, 91, 255–269.

    Article  PubMed  CAS  Google Scholar 

  • Muybridge, E. (1957). Animals in motion. New York: Dover Publications.

    Google Scholar 

  • Napier, J. R., & Napier, P. H. (1967). A handbook of living primates. New York: Academic Press.

    Google Scholar 

  • Patel, B. A. (2008). Functional morphology and biomechanics of digitigrade hand postures in cercopithecoid primates. PhD dissertation. Stony Brook University.

  • Patel, B. A. (2009). Not so fast: Speed effects on forelimb kinematics in cercopithecine monkeys and implications for digitigrade postures in primates. American Journal of Physical Anthropology, 140, 92–112.

    Article  PubMed  Google Scholar 

  • Patel, B. A. (2010). The interplay between speed, kinetics and hand postures during primate terrestrial locomotion. American Journal of Physical Anthropology, 141, 222–234.

    Google Scholar 

  • Patel, B. A., & Wunderlich, R. E. (2010). Dynamic pressure patterns in the hands of olive baboons (Papio anubis) during terrestrial locomotion: Implications for cercopithecoid primate hand morphology. Anatomical Record. 293, 710–718.

  • Polk, J. D. (2001). The influence of body size and proportions on primate quadrupedal locomotion. PhD dissertation. SUNY Stony Brook.

  • Polk, J. D. (2002). Adaptive and phylogenetic influences on musculoskeletal design in cercopithecine primates. Journal of Experimental Biology, 205, 3399–3412.

    PubMed  CAS  Google Scholar 

  • Reynolds, T. R. (1985). Stresses on he limbs of quadrupedal primates. American Journal of Physical Anthropology, 67, 351–362.

    Article  PubMed  CAS  Google Scholar 

  • Richmond, B. G. (2006). Functional morphology of the midcarpal joint in knuckle-walkers and terrestrial quadrupeds. In H. Ishida, R. Tuttle, M. Pickford, N. Ogihara, & M. Nakatsukasa (Eds.), Human origins and environmental backgrounds (pp. 105–122). New York: Springer.

    Chapter  Google Scholar 

  • Richmond, B. G., Begun, D. R., & Strait, D. S. (2001). Origin of human bipedalism: The knuckle-walking hypothesis revisited. Yearbook of Physical Anthropology, 44, 70–105.

    Article  Google Scholar 

  • Roberts, T. J., Marsh, R. L., Weyand, P. G., & Taylor, C. R. (1997). Muscular force in running turkeys: The economy of minimizing work. Science, 275, 1113–1115.

    Article  PubMed  CAS  Google Scholar 

  • Rubin, C. T., & Lanyon, L. E. (1982). Limb mechanics as a function of speed and gait: A study of functional strains in the radius and tibia of horse and dog. Journal of Experimental Biology, 101, 187–211.

    PubMed  CAS  Google Scholar 

  • Schmitt, D., Cartmill, M., Griffin, T. M., Hanna, J. B., & Lemelin, P. (2006). Adaptive value of ambling gaits in primates and other mammals. Journal of Experimental Biology, 209, 2042–2049.

    Article  PubMed  Google Scholar 

  • Smith, R. J. (1994). Degrees of freedom in interspecific allometry: An adjustment for the effects of phylogenetic constraint. American Journal of Physical Anthropology, 93, 95–107.

    Article  PubMed  CAS  Google Scholar 

  • Tokuriki, M. (1973). Electromyographic and joint mechanical studies in quadrupedal locomotion. II. Trot. Japanese Journal of Veterinary Science, 35, 525–533.

    PubMed  CAS  Google Scholar 

  • Tokuriki, M. (1974). Electromyographic and joint mechanical studies in quadrupedal locomotion. III. Gallop. Japanese Journal of Veterinary Science, 36, 121–132.

    PubMed  CAS  Google Scholar 

  • Tuttle, R. H. (1969a). Quantitative and functional studies on hands of Anthropoidea. I. Hominoidea. Journal of Morphology, 128, 309–364.

    Article  PubMed  CAS  Google Scholar 

  • Tuttle, R. H. (1969b). Terrestrial trends in the hands of the Anthropoidea. Proceedings of the 2nd International Congress of Primatology, vol. 2 (pp. 192–200). Karger: Basel.

    Google Scholar 

  • Vilensky, J. A. (1987). Locomotor behavior and control in human and non-human primates: Comparisons with cats and dogs. Neuroscience and Biobehavior Review, 11, 263–274.

    Article  CAS  Google Scholar 

  • Vilensky, J. A., & Gankiewicz, E. (1990). Effects of speed on forelimb joint angular displacement patterns in vervet monkeys (Cercopithecus aethiops). American Journal of Physical Anthropology, 83, 203–210.

    Article  PubMed  CAS  Google Scholar 

  • Walter, R. M., & Carrier, D. R. (2007). Ground forces applied by galloping dogs. Journal of Experimental Biology, 210, 208–216.

    Article  PubMed  Google Scholar 

  • Yalden, D. W. (1972). Form and function of carpal bones in some arboreally adapted mammals. Acta Anatomica, 82, 383–486.

    PubMed  CAS  Google Scholar 

  • Zar, J. H. (1999). Biostatistical analysis (4th ed.). Upper Saddle River: Prentice-Hall.

    Google Scholar 

Download references

Acknowledgments

We thank Yuzuru Hamada, Eishi Hirasaki, and Todd Rae for inviting us to contribute to this special volume. This study benefited from numerous discussions with Susan Larson, Brigitte Demes, John Fleagle, Bill Jungers, and Brian Richmond. Kristin Fuehrer provided excellent training of the monkeys. Robert Fajardo, Michael Lague, Kamla Ahluwalia, Ann Johnson, Nancy Stevens, and LeaAnn Jolley assisted with some of the treadmill data collection. Kiran Uppal assisted in the digitizing process. Financial support for this study was provided in part by the National Science Foundation in the form of dissertation improvement grants (BCS 0524988, SBR 980307), Major Research Instrumentation grant (SBR 9724225) and funding for the Primate Locomotion Laboratory (SBR 9507078, SBR 9806291, BCS 0509190, BCS 0548892), The Leakey Foundation, and Sigma Xi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biren A. Patel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, B.A., Polk, J.D. Distal Forelimb Kinematics in Erythrocebus patas and Papio anubis During Walking and Galloping. Int J Primatol 31, 191–207 (2010). https://doi.org/10.1007/s10764-010-9394-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10764-010-9394-6

Keywords

Navigation