Skip to main content
Log in

Radiation and Resonant Frequency of Superconducting Annular Ring Microstrip Antenna on Uniaxial Anisotropic Media

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

In this work, the full-wave method is used for computing the resonant frequency, the bandwidth, and radiation pattern of High temperature superconductor, or an imperfectly conducting annular ring microstrip, which is printed on uniaxial anisotropic substrate. Galerkin’s method is used in the resolution of the electric field integral equation. The TM set of modes issued from the cavity model theory are used to expand the unknown currents on the patch. Numerical results concerning the effect of the anisotropic substrates on the antenna performance are presented and discussed. It is found that microstrip superconducting could give high efficiency with high gain in millimeter wavelengths. Results are compared with previously published data and are found to be in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. D. M. Pozar, “Considerations for Millimeter Wave Printed Antennas,” IEEE Transactions on Antennas and Propagation AP-31, 740–747 (1983).

    Article  Google Scholar 

  2. C. F. L. Vasconcelos, S. G. Silva, M. R. M. L. Albuquerque, J. R. S. Oliveira and A. G. d’Assunção, “Annular ring microstrip antennas for millimeter wave applications”, Int. Journal of Infrared and Millimeter Waves, 821–829 (2007) April.

  3. A. Boufrioua and A. Benghalia, “Effects of the Resistive Patch and the Uniaxial Anisotropic Substrate on the Resonant Frequency and the Scattering Radar Cross Section of a Rectangular Microstrip Antenna”, Aerospace Science and Technology, 217-221 (2006) January.

  4. H. Chaloupka, N. Klein, M. Peiniger, H. Piel, A. Pischke and G. Splitt, “Miniaturized High-Temperature Superconductor Microstrip Patch Antenna”, IEEE Transactions MTT-39, 1513–1521 (1991).

    Google Scholar 

  5. R. C. Hansen, “Superconducting Antennas”, IEEE Transactions AES-26, 345–355 (1990).

    Google Scholar 

  6. R. C. Hansen, “Antenna Applications of Superconductors”, Transactions IEEE MTT-39, 1508–1512 (1991).

    Google Scholar 

  7. J. R. James and P. S. Hall, Handbook of Microstrip Antennas (Peter Peregrinus Ltd, London, 1989).

    Google Scholar 

  8. E. H. Newman and P. Tulyathan, “Analysis of Microstrip Antennas Using Method of Moments”, IEEE Transactions on Antennas and Propagation AP-29, 47–53 (1981).

    Article  Google Scholar 

  9. P. Silvester, “Finite Element Analysis of Planar Microwave Network”, IEEE Transactions on Microwave Theory and Techniques MTT-21, 104–108 (1973).

    Article  Google Scholar 

  10. H. F. Lee and W. Chen, Advances in Microstrip and Printed Antennas (John Wiley & Sons, New York, 1997).

    Google Scholar 

  11. T. Itoh and W. Menzel, ‘‘A Full-Wave Analysis Method for Open Microstrip Structure’’, IEEE Transactions on Antennas and Propagation AP-29, 63–68 (1981).

    Article  Google Scholar 

  12. D. M. Pozar, “Radiation and Scattering from A Micro Strip Patch on A Uniaxial Substrate’’,” IEEE Transactions on Antennas and Propagation AP-35, 613–621 (1987).

    Article  Google Scholar 

  13. V. Losada, R. R. BOIX, and M. Horno, “Resonant Modes of Circular Microstrip Patches in Multilayered Substrates”,” IEEE Transactions on Microwave Theory and Techniques 47, 488–497 (1999).

    Article  Google Scholar 

  14. S. M. Ali, W. C. Chew, and J. A. Kong, “Vector Hankel Transform Analysis of Annular Ring Microstrip Antenna”, IEEE Transactions on Antennas and Propagation AP-30, 637–644 (1982).

    Article  Google Scholar 

  15. Z. Cai and J. Bornemann, “Generalized Spectral Domain Analysis for Multilayered Complex Media and High Tc Superconductor Application”, IEEE Transactions on Microwave Theory and Techniques 40, (1992).

  16. W. Heinrich, “”Full-Wave Analysis of Conductor Losses on MMIC Transmission Lines”,” IEEE Transactions on Microwave Theory and Techniques 38, 1468–1472 (1990).

    Article  Google Scholar 

  17. R. Garg, P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook (Artech House, Boston, London, 2001).

    Google Scholar 

  18. W. C. Chew, “A Broad Band Annular Ring Micro Strip Antenna”, IEEE Transactions on Antennas and Propagation AP-30, September (1982).

  19. M. A. Richard, K. B. Bhasin, and P. C. Clapsy, “Superconducting Microstrip Antennas: An Experimental Comparison of Two Feeding Methods”, IEEE Transactions on Antennas and Propagation AP-41, 967–974 (1993).

    Article  Google Scholar 

  20. R. C. Hansen, Electrically Small, Superdirective, and Superconducting Antennas (John Wiley& Sons, Inc, Hoboken, New Jersey, 2006).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ouarda Barkat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barkat, O., Benghalia, A. Radiation and Resonant Frequency of Superconducting Annular Ring Microstrip Antenna on Uniaxial Anisotropic Media. J Infrared Milli Terahz Waves 30, 1053–1066 (2009). https://doi.org/10.1007/s10762-009-9526-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-009-9526-2

Keywords

Navigation