Skip to main content

Advertisement

Log in

Tissue distribution and expression of paraoxonases and chemokines in mouse: the ubiquitous and joint localisation suggest a systemic and coordinated role

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

A vicious cycle between oxidation and inflammation leads to complications in a growing number of disease states. Knowledge on tissue distribution of chemokines, mediators of inflammatory response, and paraoxonases, with antioxidant and anti-inflammatory actions, may be relevant. Using immunohistochemistry and quantitative real-time PCR we have investigated the distribution of PON1, 2 and 3, CCL2, 7, 8 and 12 and the chemokine receptor CCR2 protein and mRNA in 23 tissues from C57BL/6J mice. As expected, PON1, 2 and 3, CCL2, 7, 8 and 12 and CCR2 proteins were present in the vast majority of tissues investigated. Surprisingly, mRNA for these proteins was also expressed in most of these tissues suggesting local production and the ability to respond in situ to inflammatory stimuli. The wide distribution and expression of mRNA for paraoxonases and CC-chemokines suggest a systemic, probably coordinated, role in the overall inflammatory response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aviram M, Rosenblat M (2004) Paraoxonases 1, 2, and 3, oxidative stress, and macrophage foam cell formation during atherosclerosis development. Free Radic Biol Med 37:1304–1316

    Article  CAS  PubMed  Google Scholar 

  • Azfer A, Niu J, Rogers LM, Adamski FM, Kolattukudy PE (2006) Activation of endoplasmic reticulum stress response during the development of ischemic heart disease. Am J Physiol Heart Circ Physiol 291:H1411–H1420

    Article  CAS  PubMed  Google Scholar 

  • Boring L, Gosling J, Cleary M, Charo IF (1998) Decreased lesion formation in CCR2−/− mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394:894–897

    Article  CAS  PubMed  Google Scholar 

  • Charo IF, Ransohoff RM (2006) The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 354:610–621

    Article  CAS  PubMed  Google Scholar 

  • Dewald O, Zymek P, Winkelmann K, Koerting A, Ren G, Abou-Khamis T, Michael LH, Rollins BJ, Entman ML, Frangogiannis NG (2005) CCL2/Monocyte chemoattractant protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ Res 96:881–889

    Article  CAS  PubMed  Google Scholar 

  • Draganov DI, La Du BN (2004) Pharmacogenetics of paraoxonases: a brief review. Naunyn Schmiedebergs Arch Pharmacol 369:78–88

    Article  CAS  PubMed  Google Scholar 

  • Han KH, Tangirala RK, Green SR, Quehenberger O (1998) Chemokine receptor CCR2 expression and monocyte chemoattractant protein-1-mediated chemotaxis in human monocytes. A regulatory role for plasma LDL. Arterioscler Thromb Vasc Biol 18:1983–1991

    CAS  PubMed  Google Scholar 

  • Mackness B, Mackness M (2010) Anti-inflammatory properties of paraoxonase-1 in atherosclerosis. Adv Exp Med Biol 660:143–151

    Article  PubMed  Google Scholar 

  • Mackness B, Hine D, Liu Y, Mastorikou M, Mackness M (2004) Paraoxonase-1 inhibits oxidised LDL-induced MCP-1 production by endothelial cells. Biochem Biophys Res Commun 318:680–683

    Article  CAS  PubMed  Google Scholar 

  • Mackness B, Beltran-Debon R, Aragones G, Joven J, Camps J, Mackness M (2010) Human tissue distribution of paraoxonases 1 and 2 mRNA. IUBMB Life 62:480–482

    CAS  PubMed  Google Scholar 

  • Marsillach J, Mackness B, Mackness M, Riu F, Beltran R, Joven J, Camps J (2008) Immunohistochemical analysis of paraoxonases-1, 2, and 3 expression in normal mouse tissues. Free Radic Biol Med 45:146–157

    Article  CAS  PubMed  Google Scholar 

  • Mastorikou M, Mackness B, Liu Y, Mackness M (2008) Glycation of paraoxonase-1 inhibits its activity and impairs the ability of high-density lipoprotein to metabolize membrane lipid hydroperoxides. Diabet Med 25:1049–1055

    Article  CAS  PubMed  Google Scholar 

  • Ng CJ, Wadleigh DJ, Gangopadhyay A, Hama S, Grijalva VR, Navab M, Fogelman AM, Reddy ST (2001) Paraoxonase-2 is a ubiquitously expressed protein with antioxidant properties and is capable of preventing cell-mediated oxidative modification of low density lipoprotein. J Biol Chem 276:44444–44449

    Article  CAS  PubMed  Google Scholar 

  • Ng CJ, Bourquard N, Hama SY, Shih D, Grijalva VR, Navab M, Fogelman AM, Reddy ST (2007) Adenovirus-mediated expression of human paraoxonase 3 protects against the progression of atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 27:1368–1374

    Article  CAS  PubMed  Google Scholar 

  • Niu J, Kolattukudy PE (2009) Role of MCP-1 in cardiovascular disease: molecular mechanisms and clinical implications. Clin Sci (Lond) 117:95–109

    Article  CAS  Google Scholar 

  • Primo-Parmo SL, Sorenson RC, Teiber J, La Du BN (1996) The human serum paraoxonase/arylesterase gene (PON1) is one member of a multigene family. Genomics 33:498–507

    Article  CAS  PubMed  Google Scholar 

  • Reddy ST, Wadleigh DJ, Grijalva V, Ng C, Hama S, Gangopadhyay A, Shih DM, Lusis AJ, Navab M, Fogelman AM (2001) Human paraoxonase-3 is an HDL-associated enzyme with biological activity similar to paraoxonase-1 protein but is not regulated by oxidized lipids. Arterioscler Thromb Vasc Biol 21:542–547

    CAS  PubMed  Google Scholar 

  • Reddy ST, Devarajan A, Bourquard N, Shih D, Fogelman AM (2008) Is it just paraoxonase 1 or are other members of the paraoxonase gene family implicated in atherosclerosis? Curr Opin Lipidol 19:405–408

    Article  CAS  PubMed  Google Scholar 

  • Roca H, Varsos ZS, Mizutani K, Pienta KJ (2008) CCL2, survivin and autophagy: new links with implications in human cancer. Autophagy 4:969–971

    CAS  PubMed  Google Scholar 

  • Rong JX, Berman JW, Taubman MB, Fisher EA (2002) Lysophosphatidylcholine stimulates monocyte chemoattractant protein-1 gene expression in rat aortic smooth muscle cells. Arterioscler Thromb Vasc Biol 22:1617–1623

    Article  CAS  PubMed  Google Scholar 

  • Rull A, Beltran-Debon R, Aragones G, Rodriguez-Sanabria F, Alonso-Villaverde C, Camps J, Joven J (2010a) Expression of cytokine genes in the aorta is altered by the deficiency in MCP-1: effect of a high-fat, high-cholesterol diet. Cytokine 50:121–128

    Article  CAS  PubMed  Google Scholar 

  • Rull A, Camps J, Alonso-Villaverde C, Joven J (2010b) Insulin resistance and inflammation: is monocyte chemoattractant protein-1 (MCP-1/CCL2) a relevant effector in the regulation of metabolism? Mediators of inflammation (in press)

  • Salcedo R, Ponce ML, Young HA, Wasserman K, Ward JM, Kleinman HK, Oppenheim JJ, Murphy WJ (2000) Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in angiogenesis and tumor progression. Blood 96:34–40

    CAS  PubMed  Google Scholar 

  • Sears DD, Miles PD, Chapman J, Ofrecio JM, Almazan F, Thapar D, Miller YI (2009) 12/15-lipoxygenase is required for the early onset of high fat diet-induced adipose tissue inflammation and insulin resistance in mice. PLoS One 4:e7250

    Article  PubMed  Google Scholar 

  • Shih DM, Xia YR, Yu JM, Lusis AJ (2010) Temporal and tissue-specific patterns of Pon3 expression in mouse: In situ hybridization analysis. Adv Exp Med Biol 660:73–87

    Article  PubMed  Google Scholar 

  • Steinbrecher UP, Parthasarathy S, Leake DS, Witztum JL, Steinberg D (1984) Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci U S A 81:3883–3887

    Article  CAS  PubMed  Google Scholar 

  • Younce CW, Kolattukudy PE (2010) MCP-1 causes cardiomyoblast death via autophagy resulting from ER stress caused by oxidative stress generated by inducing a novel zinc-finger protein, MCPIP. Biochem J 426:43–53

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Azfer A, Niu J, Graham S, Choudhury M, Adamski FM, Younce C, Binkley PF, Kolattukudy PE (2006) Monocyte chemoattractant protein-1 induces a novel transcription factor that causes cardiac myocyte apoptosis and ventricular dysfunction. Circ Res 98:1177–1185

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by grants from the Instituto de Salud Carlos III (PI081175 and PI081381), Ministerio de Sanidad, Madrid, Spain. GA, AR, and RBD are recipients of post-graduate fellowships from the Generalitat de Catalunya (FI06/01054, SGR00503, and FI08/00064 respectively). FRS is a visiting scientist from the Facultad de Salud, Universidad Industrial de Santander, Bucaramanga, Colombia. Expert technical assistance was provided by Alba Folch and Núria Canela.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Mackness.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 25 kb)

Supplementary material 2 (DOC 45 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Sanabria, F., Rull, A., Beltrán-Debón, R. et al. Tissue distribution and expression of paraoxonases and chemokines in mouse: the ubiquitous and joint localisation suggest a systemic and coordinated role. J Mol Hist 41, 379–386 (2010). https://doi.org/10.1007/s10735-010-9299-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-010-9299-x

Keywords

Navigation