Skip to main content
Log in

Black hole entropy with minimal length in tunneling formalism

  • Letter
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Here we study the effects of the Generalized Uncertainty Principle in the tunneling formalism for Hawking radiation to evaluate the quantum-corrected Hawking temperature and entropy for a Schwarzschild black hole. We compare our results with the existing results given by other candidate theories of quantum gravity. In the entropy-area relation we found some new correction terms and in the leading order we found a term which varies as \(\sim \sqrt{Area}\). We also get the well known logarithmic correction in the sub-leading order. We discuss the significance of this new quantum corrected leading order term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes

  1. Although there are reasons to believe that Painleve coordinates are not good for this particular problem as they have two time contributions. The first time contribution can be seen from equation (1) of [14] where the relation between Schwarzschild time and Painleve time is given. After horizon crossing the argument of the log term becomes negative and gives an imaginary contribution. The emergence of second time contribution was shown in [73] which is very crucial in getting the correct Hawking temperature preserving canonical invariance and unitarity.

  2. In many problems of quantum mechanics we usually find \(\langle p \rangle =\langle x \rangle =0~\) (for example for the ground state of harmonic oscillator).

References

  1. Bekenstein, J.D.: Phys. Rev. D 7, 2333 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  2. Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  3. Strominger, A., Vafa, C.: Phys. Lett. B 379, 99 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  4. Ashtekar, A., Baez, J., Corichi, A., Krasnov, K.: Phys. Rev. Lett. 80, 904 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Kaul, R.K., Majumdar, P.: Phys. Rev. Lett. 84, 5255 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  6. Ghosh, A., Mitra, P.: Phys. Lett. B 616, 114 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Amelino-Camelia, G., Arzano, M., Ling, Y., Mandanici, G.: Class. Quant. Grav. 23, 2585 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Medved, A.J.M., Vagenas, E.C.: Phys. Rev. D 70, 124021 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  9. Das, S., Majumdar, P., Bhaduri, R.K.: Class. Quant. Grav. 19, 2355 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Domagala, M., Lewandowski, J.: Class. Quant. Grav. 21, 5233 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Chatterjee, A., Majumdar, P.: Phys. Rev. Lett. 92, 141301 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  12. Camellia, G.A., Arzano, M., Procaccini, A.: Phys. Rev. D 70, 107501 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  13. Meissner, K.A.: Class. Quant. Grav. 21, 5245 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Parikh, M.K., Wilczek, F.: Phys. Rev. Lett. 85, 5042 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  15. Srinivasan, K., Padmanabhan, T.: Phys. Rev. D 60, 024007 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  16. Jiang, Q.-Q., Wu, S.-Q., Cai, X.: Phys. Rev. D 73, 064003 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  17. Xu, Z., Chen, B.: Phys. Rev. D 75, 024041 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  18. Kerner, R., Mann, R.B.: Class. Quant. Grav. 25, 095014 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  19. Di Criscienzo, R., Vanzo, L.: Europhys. Lett. 82, 60001 (2008)

    Article  Google Scholar 

  20. Chen, D.-Y., Jiang, Q.-Q., Zu, X.-T.: Phys. Lett. B. 65, 106 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  21. Arzano, M., Medved, A.J.M., Vagenas, E.C.: JHEP 09, 037 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  22. Medved, A.J.M., Vagenas, E.C.: Mod. Phys. Lett. A 20, 2449 (2005)

    Article  ADS  MATH  Google Scholar 

  23. Vagenas, E.C.: Phys. Lett. B 503, 399 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Vagenas, E.C.: Mod. Phys. Lett. A 17, 609 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Vagenas, E.C.: Phys. Lett. B 533, 302 (2002)

    Article  ADS  MATH  Google Scholar 

  26. Vagenas, E.C.: Phys. Lett. B 559, 65 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Vagenas, E.C.: Nuovo Cim. B 117, 899 (2002)

    ADS  Google Scholar 

  28. Setare, M.R., Vagenas, E.C.: Phys. Lett. B 584, 127 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Setare, M.R., Vagenas, E.C.: Int. J. Mod. Phys. A 20, 7219 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Banerjee, R., Majhi, B.R.: Phys. Lett. B 662, 62 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  31. Banerjee, R., Majhi, B.R., Samanta, S.: Phys. Rev. D 77, 124035 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  32. Mead, C.A.: Phys. Rev. D 135, 849 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  33. Amati, D., Ciafaloni, M., Veneziano, G.: Phys. Lett. B 216, 41 (1989)

    Article  ADS  Google Scholar 

  34. Maggiore, M.: Phys. Lett. B 319, 83 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  35. Garay, L.J.: Int. J. Mod. Phys. A 10, 145 (1995)

    Article  ADS  Google Scholar 

  36. Hossenfelder, S., Bleicher, M., Hofmann, S., Ruppert, J., Scherer, S., Stoecker, H.: Phys. Lett. B 575, 85 (2003)

    Article  ADS  MATH  Google Scholar 

  37. Bambi, C., Urban, F.R.: Class. Quant. Grav. 25, 095006 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  38. Kempf, A., Mangano, G., Mann, R.B.: Phys. Rev. D 52, 1108 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  39. Brau, F.: J. Phys. A 32, 7691 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Magueijo, J., Smolin, L.: Phys. Rev. Lett. 88, 190403 (2002)

    Article  ADS  Google Scholar 

  41. Maggiore, M.: Phys. Lett. B 304, 65 (1993)

    Article  ADS  Google Scholar 

  42. Scardigli, F.: Phys. Lett. B 452, 39 (1999)

    Article  ADS  Google Scholar 

  43. Cortes, J.L., Gamboa, J.: Phys. Rev. D 71, 065015 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  44. Hossain, G.M., Husain, V., Seahra, S.S.: Class. Quant. Grav. 27, 165013 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  45. Adler, R.J., Chen, P., Santiago, D.I.: Gen. Relativ. Gravit. 33, 2101 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. Bolen, B., Cavaglia, M.: Gen. Relativ. Gravit. 37, 1255 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. Myung, Y.S., Kim, Y.-W., Park, Y.-J.: Phys. Lett. B 645, 393 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. Xiang, Li, Wen, X.Q.: JHEP 10, 046 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  49. Banerjee, R., Ghosh, S.: Phys. Lett. B 688, 224 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  50. Nozari, K., Sefiedgar, A.S.: Phys. Lett. B 635, 156 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. Padmanabhan, T.: Phys. Rev. Lett. 78, 1854 (1997)

    Article  ADS  Google Scholar 

  52. Padmanabhan, T.: Phys. Rev. D 57, 6206 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  53. Srinivasan, K., Sriramkumar, L., Padmanabhan, T.: Phys. Rev. D 58, 044009 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  54. Das, S., Vagenas, E.C.: Phys. Rev. Lett. 101, 221301 (2008)

    Article  ADS  Google Scholar 

  55. Ali, A.F., Das, S., Vagenas, E.C.: Phys. Rev. D 84, 044013 (2011)

    Article  ADS  Google Scholar 

  56. Pikovski, I., Vanner, M.R., Aspelmeyer, M., Kim, M., Brukner, C., Kim, M.S., Brukner, C.: Nat. Phys. 8, 393 (2012)

    Article  Google Scholar 

  57. Bekenstein, J.D.: Phys. Rev. D 86, 124040 (2012)

    Article  ADS  Google Scholar 

  58. Ali, A.F., Das, S., Vagenas, E.C.: Phys. Lett. B 678, 497 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  59. Das, S., Vagenas, E.C., Ali, A.F.: Phys. Lett. B 690, 407 (2010)

    Article  ADS  Google Scholar 

  60. Basilakos, S., Das, S., Vagenas, E.C.: JCAP 027, 1009 (2010)

    Google Scholar 

  61. Alberto, P., Das, S., Vagenas, E.C.: Phys. Lett. A 375, 1436 (2011)

    Article  ADS  MATH  Google Scholar 

  62. Majumder, B.: Phys. Lett. B 699, 315 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  63. Pedram, P., Nozari, K., Taheri, S.H.: JHEP 03, 093 (2011)

    Article  ADS  Google Scholar 

  64. Majumder, B.: Phys. Lett. B 701, 384 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  65. Majumder, B.: Astrophys. Space Sci. 336, 331 (2011)

    Article  ADS  Google Scholar 

  66. Majumder, B.: arXiv:1105.2428 [gr-qc]

  67. Majumder, B.: Phys. Rev. D 84, 064031 (2011)

    Article  ADS  Google Scholar 

  68. Majumder, B.: Phys. Lett. B 709, 133 (2012)

    Article  ADS  Google Scholar 

  69. Majumder, B., Sen, S.: Phys. Lett. B 717, 291 (2012)

    Article  ADS  Google Scholar 

  70. Zeynali, K., Darabi, F., Motavalli, H.: Mod. Phys. Lett. A 27, 1250227 (2012)

    Article  ADS  Google Scholar 

  71. Ali, A.F.: Class. Quant. Gravit. 28, 065013 (2011)

    Article  ADS  Google Scholar 

  72. Painleve, P.: C.R. Acad. Sci. (Paris) 173, 677 (1921)

    MATH  Google Scholar 

  73. Akhmedov, E.T., Pilling, T., Singleton, D.: Int. J. Mod. Phys. D 17, 2453 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  74. Akhmedov, E.T., Akhmedova, V., Singleton, D.: Phys. Lett. B 642, 124 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  75. Akhmedov, E.T., Akhmedova, V., Singleton, D., Pilling, T.: Int. J. Mod. Phys. A 22, 1705 (2007)

    Article  ADS  MATH  Google Scholar 

  76. Li, Z.H.: Phys. Rev. D 80, 084013 (2009)

    Article  ADS  Google Scholar 

  77. Li, M., Yoneya, T.: Chaos Solitons Fractals 10, 423 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  78. Lifshitz, E.M., Pitaevskii, L.P., Berestetskii, V.B.: Landau-Lifshitz Course of Theoretical Physics, Vol. 4: Quantum Electrodynamics. Reed Educational and Professional Publishing, Oxford (1982)

    Google Scholar 

  79. Akhmedova, V., Pilling, T., de Gill, A., Singleton, D.: Phys. Lett. B 666, 269 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  80. Akhmedova, V., Pilling, T., de Gill, A., Singleton, D.: Phys. Lett. B 673, 227 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  81. Adler, R.J., Das, T.K.: Phys. Rev. D 14, 2474 (1976)

    Article  ADS  Google Scholar 

  82. Kuchiev, M.Y., Flambaum, V.V.: Phys. Rev. D 70, 044022 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  83. Fursaev, D.V.: Phys. Rev. D 51, 5352 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  84. Majumder, B.: Phys. Lett. B 703, 402 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  85. Wang, W., Huang, D.: Europhys. Lett. 99, 11002 (2012)

    Article  ADS  Google Scholar 

  86. G. ’t Hooft, gr-qc/9310026; L. Susskind and E. Witten, hep-th/9805114 and the references therein

  87. Fischler, W. Susskind, L.: hep-th/9806039

Download references

Acknowledgments

The author was partly supported by the Excellence-in-Research Fellowship of IIT Gandhinagar. The author would like to thank Prof. Douglas Singleton for enlightening comments and helpful suggestions which helped immensely in writing a major part of the manuscript. The author would also like to thank an anonymous referee for suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barun Majumder.

Appendix

Appendix

Let us consider a static line element in \((1+1)\) dimension

$$\begin{aligned} ds^2 = f(r)dt^2 - \frac{1}{f(r)}dr^2 \end{aligned}$$
(36)

where \(f(r)\) is an arbitrary function of \(r\). We also consider that at \(r=r_0\) there is a horizon and \(f(r)\vert _{r=r_0}=0\). If we take a massive minimally coupled scalar field \(\phi \) in this background then the field \(\phi \) satisfies the Klein-Gordon equation

$$\begin{aligned} \left[ \Box + \frac{m^2}{\hbar ^2}\right] \phi = 0. \end{aligned}$$
(37)

Evaluating \(\Box \) operator in the background 36 we can write

$$\begin{aligned} \frac{1}{f(r)}\frac{\partial ^2 \phi }{\partial t^2} - \frac{\partial }{\partial r} \left\{ f(r)\frac{\partial \phi }{\partial r}\right\} =-\frac{m^2}{\hbar ^2}\phi . \end{aligned}$$
(38)

We can rewrite this equation as

$$\begin{aligned} \left[ \frac{1}{f(r)}\left( \frac{\partial S}{\partial t}\right) ^2 \!-\! f(r)\left( \frac{\partial S}{\partial r}\right) ^2 \!-\!m^2 \right] \!-\! i\hbar \left[ \frac{1}{f(r)}\frac{\partial ^2 S}{\partial t^2} \!-\! f(r) \frac{\partial ^2 S}{\partial r^2} \!-\! \frac{df(r)}{dr}\frac{\partial S}{\partial r}\right] = 0\nonumber \\ \end{aligned}$$
(39)

where we considered the ansatz \(\phi (r,t) = e^{\frac{i}{\hbar } S(r,t)}\) for the semi-classical wave function of the Klein-Gordon equation. If we expand \(S(r,t)\) in powers of (\(\frac{\hbar }{i}\)) then \(S_0(r,t)\), the leading order in the expansion, satisfies the Hamilton-Jacobi equation

$$\begin{aligned} \frac{1}{f(r)} \left( \frac{\partial S_0}{\partial t}\right) ^2 - f(r)\left( \frac{\partial S_0}{\partial r}\right) ^2 - m^2 = 0. \end{aligned}$$
(40)

The solution of this equation is

$$\begin{aligned} S_0(r,t) = -Et \pm \int \frac{dr}{f(r)}\sqrt{E^2 - m^2 f(r)}. \end{aligned}$$
(41)

In the massless case the solution is

$$\begin{aligned} S_0(r,t)\vert _{m=0} = f_1 (t-r_t) + f_2 (t+r_t) \end{aligned}$$
(42)

where \(r_t=\int \frac{dr}{f(r)}\) is the tortoise coordinate and \(f_1\) and \(f_2\) are arbitrary functions. The choice of \(f_{1,2} = -Et\pm Er_t\) gives Eq. 41 in the massless case. Here \(E\) is identified with energy. So we can see that the semiclassical ansatz is exact for the massless scalar field but one can also show that the final results remain same for the massive scalar field [15].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majumder, B. Black hole entropy with minimal length in tunneling formalism. Gen Relativ Gravit 45, 2403–2414 (2013). https://doi.org/10.1007/s10714-013-1581-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-013-1581-2

Keywords

Navigation