Skip to main content

Advertisement

Log in

On tail trend detection: modeling relative risk

  • Published:
Extremes Aims and scope Submit manuscript

Abstract

The climate change dispute is about changes over time of environmental characteristics (such as rainfall). Some people say that a possible change is not so much in the mean but rather in the extreme phenomena (that is, the average rainfall may not change much but heavy storms may become more or less frequent). The paper studies changes over time in the probability that some high threshold is exceeded. The model is such that the threshold does not need to be specified, the results hold for any high threshold. For simplicity a certain linear trend is studied depending on one real parameter. Estimation and testing procedures (is there a trend?) are developed. Simulation results are presented. The method is applied to trends in heavy rainfall at 18 gauging stations across Germany and The Netherlands. A tentative conclusion is that the trend seems to depend on whether or not a station is close to the sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • AghaKouchak, A., Nasrollahi, N.: Semi-parametric and parametric inference of extreme value models for rainfall data. Water Resour. Manage. 24, 1229–1249 (2010)

    Article  Google Scholar 

  • Alexander, L.V., Zhang, X., Peterson, T.C., Caesar, J., Gleason, B., Klein Tank, A.M.G., Haylock, M., Collins, D., Trewin, B., Rahimzadeh, F., Tagipour, A., Rupa Kumar, K., Revadekar, J., Griffiths, G., Vincent, L., Stephenson, D.B., Burn, J., Aguilar, E., Brunet, M., Taylor, M., New, M., Zhai, P., Rusticucci, M., Vazquez-Aguirre, J.L.: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. 111, D05109 (2006)

    Google Scholar 

  • Allen, M.R., Ingram, W.J.: Constraints on future changes in climate and the hydrologic cycle. Nature 419, 224–232 (2002)

    Article  Google Scholar 

  • Buishand, T.A., de Haan, L., Zhou, C: On spatial extremes: with application to a rainfall problem. Ann. Appl. Statist. 2, 624–642 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Burauskaite-Harju, A., Grimvall, A., von Brömssen, C.: Analysing trends in precipitation extremes for a network of stations. Int. J. Climatol. 32, 86–94 (2012)

    Article  Google Scholar 

  • Caeiro, F., Gomes, M.I., Pestana, D.: Direct reduction of bias of the classical Hill estimator. Revstat 3, 113–136 (2005)

    MATH  MathSciNet  Google Scholar 

  • Cai, J., de Haan, L., Zhou, C.: Bias correction in extreme value statisticswith index around zero. Extremes 16, 173–201 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  • Chavez-Demoulin, V.: Two problems in environmental statistics: capture-recapture analysis and smooth extremal models, PhD Thesis. Department of mathematics, swiss federal institute of technology, Lausanne (1999)

  • Coles, S.: An introduction to statistical modeling of extreme values. Springer Verlag (2001)

  • Davison, A.C., Ramesh, N.: Local likelihood smoothing of sample extremes. J.R. Statist. Soc. B 62, 191–208 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Davison, A.C., Smith, R.L.: Models for exceedances over high thresholds (with discussion). J. R. Statist. Soc. B 52, 393–442 (1990)

    MATH  MathSciNet  Google Scholar 

  • de Haan, L.: Fighting the arch-enemy with mathematics. Statist. Neerlandica 44, 45–68 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  • de Haan, L., Ferreira, A.: Extreme value theory: an introduction. Springer (2006)

  • Drees, H., Ferreira, A., de Haan, L.: On maximum likelihood estimation of the extreme value index. Ann. Appl. Probab. 14, 1179–1201 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Gaetan, C., Grigoletto, M.: Smoothing sample extremes with dynamic models. Extremes 7, 221–236 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Gomes, M.I., de Haan, L., Henriques Rodrigues, L.: Tail index estimation through accommodation of bias in the weighted log-excesses. J. Roy. Statist. Soc. Ser. B 70, 31–52 (2008)

    MATH  MathSciNet  Google Scholar 

  • Groisman, P.Y., Knight, R.W., Easterling, D.R., Karl, T.R., Hegerl, G.C., Razuvaev, V.N.: Trends in intense precipitation in the climate record. J. Climate 18, 1326–1350 (2005)

    Article  Google Scholar 

  • Hall, P., Tajvidi, N.: Nonparametric analysis of temporal trend when fitting parametric models to extreme-value data. Statist. Sci. 15, 153–167 (2000)

    Article  MathSciNet  Google Scholar 

  • Hanel, M., Buishand, T.A., Ferro, C.A.T.: A nonstationary index flood model for precipitation extremes in transient regional climate model simulations. J. Geophys. Res. 114, (D15107) (2009)

    Article  Google Scholar 

  • Hill, B.M.: A simple general approach to inference about the tail of a distribution. Ann. Statist. 3, 1163–1174 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  • Klein Tank, A.M.G., Können, G.P.: Trends in indices of daily temperature and precipitation extremes in Europe, 1946-99. J. Climate 16, 3665–3680 (2003)

    Article  Google Scholar 

  • Kottek, M., Grieser, J., Christoph, B., Rudolph, B., Rubel, F.: World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 15, 259–263 (2006)

    Article  Google Scholar 

  • Lenderink, G., van Meijgaard, E., Selten, F.: Intense coastal rainfall in The Netherlands in response to high sea surface temperatures: analysis of the event of august 2006 from the perspective of a changing climate. Clim. Dyn. 32, 19–33 (2009)

    Article  Google Scholar 

  • Mannshardt-Shamseldin, E.C., Smith, R.L., Sain, S.R., Mearns, L.O., Cooley, D.: Downscaling extremes: a comparison of extreme value distributions in point-source and gridded precipitation data. Ann. Appl. Statist. 4, 484–502 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Pauli, F., Coles, S.G.: Penalized likelihood inference in extreme value analyses. J. Appl. Stat. 28, 547–560 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Peel, M., Finlayson, B.L., McMahon, T.A.: Updated world map of the Kop̈pen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644 (2007)

    Article  Google Scholar 

  • Pickands, J.: The two-dimensional Poisson process and extremal processes. J. Appl. Probab. 8, 745–756 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  • Pickands, J.: Statistical inference using extreme order statistics. Ann. Statist. 3, 119–131 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  • Rao, C.R.: Linear statistical inference and its applications. Wiley, New York (1973)

    Book  MATH  Google Scholar 

  • Resnick, S.I.: Tail equivalence and its applications. J. Appl. Prob. 8, 135–156 (1971)

    MATH  Google Scholar 

  • Serfling, R.J.: Approximation theorems of mathematical statistics. Wiley series in probability and statistics. Wiley, New York (2002)

    Google Scholar 

  • Smith, R.L.: Estimating tails of probability distributions. Ann. Statist. 15, 1174–1207 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  • Smith, R.L.: Extreme value analysis of environmental time series: an application to trend detection in ground-level ozone. Stat. Sci. 4, 367–393 (1989)

    Article  MATH  Google Scholar 

  • Tomassini, L., Jacob, D.: Spatial analysis of trends in extreme precipitation events in highresolution climate model results and observations for Germany. J. Geophys. Res. 3, D1211 (2009)

    Google Scholar 

  • Yee, T.W., Stephenson, A.G: Vector generalized linear and additive extreme value models. Extremes 10, 1–19 (2007)

    Article  MathSciNet  Google Scholar 

  • Zhou, C.: Existence and consistency of the maximum likelihood estimator for the extreme value index. J. Multivar. Anal. 100, 794–815 (2009)

    Article  MATH  Google Scholar 

  • Zolina, O., Simmer, C., Belyaev, K., Kapala, A., Gulev, S.: Improving estimates of heavy and extreme precipitation using daily records from European rain gauges. J. Hydrometeorol. 10, 701–716 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurens de Haan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Haan, L., Tank, A.K. & Neves, C. On tail trend detection: modeling relative risk. Extremes 18, 141–178 (2015). https://doi.org/10.1007/s10687-014-0207-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10687-014-0207-8

Keywords

AMS 2000 Subject Classifications

Navigation