Skip to main content

Advertisement

Log in

Co-assessment of biomass and soil organic carbon stocks in a future reservoir area located in Southeast Asia

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

An assessment of the organic carbon stock present in living or dead vegetation and in the soil on the 450 km2 of the future Nam Theun 2 hydroelectric reservoir in Lao People’s Democratic Republic was made. Nine land cover types were defined on the studied area: dense, medium, light, degraded, and riparian forests; agricultural soil; swamps; water; and others (roads, construction sites, and so on). Their geographical distribution was assessed by remote sensing using two 2008 SPOT 5 images. The area is mainly covered by dense and light forests (59%), while agricultural soil and swamps account for 11% and 2%, respectively. For each of these cover types, except water, organic carbon density was measured in the five pools defined by the Intergovernmental Panel on Climate Change: aboveground biomass, litter, deadwood, belowground biomass, and soil organic carbon. The area-weighted mean carbon densities for these pools were estimated at 45.4, 2.0, 2.2, 3.4, and 62.2 tC/ha, respectively, i.e., a total of about 115 ± 15 tC/ha for a soil thickness of 30 cm, corresponding to a total flooded organic carbon stock of 5.1 ± 0.7 MtC. This value is much lower than the carbon density for some South American reservoirs for example where total organic carbon stocks range from 251 to 326 tC/ha. It can be mainly explained by (1) the higher biomass density of South American tropical primary rainforest than of forests in this study and (2) the high proportion of areas with low carbon density, such as agricultural or slash-and-burn zones, in the studied area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abril, G., Guérin, F., Richard, S., Delmas, R., Galy-Lacaux, C., Gosse, P., et al. (2005). Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit-Saut, French Guiana). Global Biogeochemical Cycles, 19, GB4007. doi:10.1029/2005GB002457.

    Article  Google Scholar 

  • Anaya, J. A., Chuvieco, E., & Palacios-Orueta, A. (2009). Aboveground biomass assessment in Colombia: A remote sensing approach. Forest Ecology and Management, 257, 1237–1246.

    Article  Google Scholar 

  • Batjes, N. H. (1996). Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47, 151–163.

    Article  CAS  Google Scholar 

  • Blais, A.-M., Lorrain, S., Plourde, Y., & Varfalvy, L. (2005). Organic carbon densities of soils and vegetation of tropical, temperate and boreal forests. In A. Tremblay, L. Varfalvy, C. Roehm, & M. Garneau (Eds.), Greenhouse gas emissions—fluxes and processes (pp. 155–185). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Brearley, F. Q., Prajadinata, S., Kidd, P. S., Proctor, & Suriantata, J. (2004). Structure and floristics of an old secondary rain forest in Central Kalimantan, Indonesia, and a comparison with adjacent primary forest. Forest Ecology and Management, 195, 385–397.

    Article  Google Scholar 

  • Broadbent, E. N., Asner, G. P., Peña-Claros, M., Palace, M., & Soriano, M. (2008). Spatial partitioning of biomass and diversity in a lowland Bolivian forest: Linking field and remote sensing measurements. Forest Ecology and Management, 255, 2602–2616.

    Article  Google Scholar 

  • Brown, S. (1997). Estimating biomass and biomass change of tropical forests: A primer. FAO Forestry Paper—134. Rome: FAO.

  • Brown, S., Gillespie, A. J. R., & Lugo, A. E. (1989). Biomass estimation methods for tropical forests with applications to forest inventory data. Forest Science, 35, 881–902.

    Google Scholar 

  • Brown, S., Iverson, L. R., Prasad, A., & Liu, D. (1993). Geographical distribution of carbon in biomass and soils of tropical Asian forests. Geocarto International, 4, 45–59.

    Article  Google Scholar 

  • Chave, J., Condit, R., Aguilar, S., Hernandez, A., Lao, S., & Perez, R. (2004). Error propagation and scaling for tropical forest biomass estimates. Philosophical Transactions of the Royal Society B, 359, 409–420.

    Article  Google Scholar 

  • Coûteaux, M. -M., Bottner, P., & Berg, B. (1995). Litter decomposition, climate and litter quality. Tree, 10, 63–66.

    Google Scholar 

  • Delmas, R., Galy-Lacaux, C., & Richard, S. (2001). Emissions of greenhouse gases from the Petit-Saut hydroelectric reservoir compared to emissions from thermal alternatives. Global Biochemical Cycles, 15, 993–1003.

    Article  CAS  Google Scholar 

  • Delmas, R., Richard, S., Guérin, F., Abril, G., Galy-Lacaux, C., Delon, C., et al. (2005). Long term greenhouse gas emissions from the hydroelectric reservoir of Petit Saut (French Guiana) and potential impacts. In A. Tremblay, L. Varfalvy, C. Roehm, & M. Garneau (Eds.), Greenhouse gas emissions—fluxes and processes (pp. 293–312). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Dong, J., Kaufmann, R. K., Myneni, R. B., Tucker, C. J., Kauppi, P. E., Liski, J., et al. (2003). Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks. Remote Sensing of Environment, 84, 393–410.

    Article  Google Scholar 

  • Dos Santos, M. A., Rosa, L. P., Sikar, B., Sikar, E., & dos Santos, E. O. (2006). Gross greenhouse gas fluxes from hydro-power reservoir compared to thermo-power plants. Energy Policy, 34, 481–488.

    Article  Google Scholar 

  • Drake, J. B., Dubayah, R. O., Knox, R. G., Clark, D. B., & Blair, J. B. (2002). Sensitivity of large-footprint lidar to canopy structure and biomass in a neotropical rainforest. Remote Sensing of Environment, 81, 378–392.

    Article  Google Scholar 

  • Drake, J. B., Knox, R. G., Dubayah, R. O., Clark, D. B., Condit, R., Blair, J. B., et al. (2003). Above-ground biomass estimation in closed canopy neotropical forests using lidar remote sensing: Factors affecting the generality of relationships. Global Ecology and Biogeography, 12, 147–159.

    Article  Google Scholar 

  • Embaye, K., Weih, M., Ledin, S., & Christersson, L. (2005). Biomass and nutrient distribution in a highland bamboo forest in southwest Ethiopia: Implications for management. Forest Ecology and Management, 204, 159–169.

    Article  Google Scholar 

  • FAO (Food and Agriculture Organization) (2001). Global forest resources assessment 2000—main report. FAO Forestry Paper No. 140. Rome: FAO.

  • FAO (Food and Agriculture Organization) (2004). Global forest resources assessment update 2005—terms and definitions. Forest resources assessment programme, Working Paper 83/E. Rome: FAO.

  • FAO (Food and Agriculture Organization) (2006). Global forest resources assessment 2005—main report. FAO Forestry Paper No. 147. Rome: FAO.

  • Fearnside, P. M. (1995). Hydroelectric dams in the Brazilian Amazon as sources of ‘greenhouse’ gases. Environmental Conservation, 22, 7–19.

    Article  CAS  Google Scholar 

  • Fearnside, P. M. (1997). Greenhouse-gas emissions from Amazonian hydroelectric reservoirs: The example of Brazil’s Tucuruí Dam as compared to fossil fuel alternatives. Environmental Conservation, 24, 64–75.

    Article  CAS  Google Scholar 

  • Fearnside, P. M. (2005). Do hydroelectric dams mitigate global warming? The case of Brazil’s Curuá-Una dam. Mitigation and Adaptation Strategies for Global Change, 10, 675–691.

    Article  Google Scholar 

  • Galy-Lacaux, C., Delmas, R., Dumestre, J. -F., & Richard, S. (1997). Evolution temporelle des émissions gazeuses et des profils de gaz dissous. Estimation du bilan de carbone de la retenue de Petit Saut deux ans après sa mise en eau. Hydroécologie Appliquée, 1–2, 85–114.

    Article  Google Scholar 

  • Gaudette, H. E., Flight, W. R., Toner, L., & Folger, D. W. (1974). An inexpensive titration method for the determination of organic carbon in recent sediments. Journal of Sedimentary Petrology, 44, 249–253.

    CAS  Google Scholar 

  • Gehring, C., Park, S., & Denich, M. (2004). Liana allometric biomass equations for Amazonian primary and secondary forest. Forest Ecology and Management, 195, 69–83.

    Article  Google Scholar 

  • Giles, J. (2006). Methane quashes green credentials of hydropower. Nature, 444, 524–525.

    Article  Google Scholar 

  • Goetz, S. J., Prince, S. D., Goward, S. N., Thawley, M. M., & Small, J. (1999). Satellite remote sensing of primary production: An improved production efficiency modeling approach. Ecological Modelling, 122, 239–255.

    Article  Google Scholar 

  • Gomez, C., Viscarra Rossel, R. A., & McBratney, A. B. (2008). Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: an Australian case study. Geoderma, 146, 403–411.

    Article  CAS  Google Scholar 

  • Guérin, F., Abril, G., de Junet, A. & Bonnet, M.-P. (2008). Anaerobic decomposition of tropical soils and plant material: Implication for the CO2 and CH4 budget of the Petit Saut Reservoir. Applied Geochemistry, 23, 2272–2283.

    Article  Google Scholar 

  • Harvey, L. D. D. (2006). The exchanges between Fearnside and Rosa concerning the greenhouse gas emissions from hydro-electric power dams. Climatic Change, 75, 87–90. doi:10.1007/s10584-006-9083-9.

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2003). In J. Penman et al. (Eds.), Land use, land-use change and forestry. Hayama: Japan.

  • IPCC (Intergovernmental Panel on Climate Change) (2007). In S. Solomon et al. (Eds.), Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. UK: Cambridge University Press.

    Google Scholar 

  • Jackson, R. B., Canadell, J., Ehleringer, J. R., Mooney, H. A., Sala, O. E., & Schulze, E. -D. (1996). A global analysis of root distributions for terrestrial biomes. Oecologia, 108, 389–411.

    Article  Google Scholar 

  • Jacquemoud, S. & Baret, F. (1990). PROSPECT: A model of leaf optical properties spectra. Remote Sensing of Environment, 34, 75–91.

    Article  Google Scholar 

  • Kato, R., Tadaki, Y., & Ogawa, H. (1978). Plant biomass and growth increment studies in Pasoh Forest. Malaysain Nature Journal, 30, 211–224.

    Google Scholar 

  • Kaufman, Y. J., Tucker, C. J., & Fung, I. (1990). Remote sensing of biomass burning in the tropics. Journal of Geophysical Research, 95, 9927–9939.

    Article  Google Scholar 

  • Kneisys, F. X., Abreu, L. W., Anderson, G. P., & Chetwynd, J. H. (1995). The MODTRAN 2/3 and LOWTRAN 7 model. North Andover: Philips Laboratory, prepared by Ontar Corporation.

  • Kumar, B. M., Rajesh, G., & Sudheesh, K. G. (2005). Aboveground biomass production and nutrient uptake of thorny bamboo [Bambusa bambos (L.) Voss] in the homegardens of Thrissur, Kerala. Journal of Tropical Agriculture, 4, 51–56.

    Google Scholar 

  • Lefsky, M. A., Cohen, W. B., Parker, G. G., & Harding, D. J. (2002). Lidar remote sensing for ecosystem studies. BioScience, 52, 19–30.

    Article  Google Scholar 

  • Levine, J. S. (1991). Global biomass burning—atmospheric, climatic, and biospheric implications. Cambridge: Massachusetts Institute of Technology.

    Google Scholar 

  • Njoku, E. G., & Entekhabi, D. (1996). Passive microwave remote sensing of soil moisture. Journal of Hydrology, 184, 101–129.

    Article  CAS  Google Scholar 

  • Noordwijk, M., van Cerri, C., Woomer, P. L., Nugroho, K., & Bernoux, M. (1997). Soil carbon dynamics in the humid tropical forest zone. Geoderma, 79, 187–225.

    Article  Google Scholar 

  • NTPC (Nam Theun 2 Power Company) (2005). Environmental Assessment and Management Plan - Nam Theun 2 Hydroelectric Project. Nam Theun 2 Power Company.

  • Olson, J., & Watts, J. A. (1982). Major world ecosystem complexes ranked by carbon in live vegetation. TN (1982) NDP-017. Oak Ridge: Oak Ridge National Laboratory.

  • Olson, J. S., Watts, L. J., & Alison, L. J. (1983). Carbon in live vegetation of major world ecosystems, Report ORNL-5862. Oak Ridge: Oak Ridge National Laboratory.

  • Osada, N., Takeda, H., Kawaguchi, H., Furukawa, A., & Awang, M. (2003). Estimation of crown characters and leaf biomass from leaf litter in a Malaysian canopy species, Elateriospermum tapos (Euphorbiaceae). Forest Ecology and Management, 177, 379–386.

    Article  Google Scholar 

  • Poilvé, H., & Houdry, P. (2007). Overland thematic processor brochure. http://www.infoterra.fr/Infoterra/BrochuresPdf/7-Overland.pdf. Accessed 17 February 2010.

  • Post, W. M., Emanuel, W. R., Zinke, P. J., & Stangenberger, A. G. (1982). Soil carbon pools and world life zones. Nature, 298, 156–159.

    Article  CAS  Google Scholar 

  • Prosser, J. R. (1997). Estimation of residual biomass and its distribution in Nam Theun 2 reservoir. Projection to end of 1999–2000 logging season. Nan Theun 2 Power Company. April 2000.

  • RDP Lao-SGE (République Démocratique Populaire Lao—Service Géographique d’Etat) (1985). 1/100,000 topographic map nos. E4866, E4878, E4879, and E4991.

  • Richard, S., Gosse, P., Grégoire, A., Delmas, R. & Galy-Lacaux, C. (2005). Impact of methane oxidation in tropical reservoirs on greenhouse gases fluxes and water quality. In A. Tremblay, L. Varfalvy, C. Roehm, & M. Garneau (Eds.), Greenhouse gas emissions—fluxes and processes (pp. 293–312). Berlin: Springer-Verlag.

    Google Scholar 

  • Roder, W., Phengchanh, S., & Maniphone, S. (1997). Dynamics of soil and vegetation during crop and fallow period in slash-and-burn fields of northern Laos. Geoderma, 76, 131–144.

    Article  Google Scholar 

  • Rosa, P. L., & dos Santos, M. A. (2000). Certainty and uncertainty in the science of greenhouse gas emissions from hydroelectric reservoirs (Part II). WDC thematic review environmental issues II.2. World commission on dams. Cape Town: World Commission on Dams.

  • Rosa, L. P., dos Santos, M. A., Matvienko, B., Sikar, E., Lourenço, R. S. M., & Menezes, C. F. (2003). Biogenic gas production from major Amazon reservoirs, Brazil. Hydrological Processes, 17, 1443–1450.

    Article  Google Scholar 

  • Rumpel, C., Alexis, M., Chabbi, A., Chaplot, V., Rasse, D. P., Valentin, C., et al. (2006). Black carbon contribution to soil organic matter composition in tropical sloping land under slash and burn agriculture. Geoderma, 130, 35–46.

    Article  CAS  Google Scholar 

  • Schenk, H. J., & Jackson, R. B. (2002). The global biogeography of roots. Ecological Monographs, 72, 311–328.

    Article  Google Scholar 

  • Shanmughavel, P., Zheng, Z., Liqing, S., & Min, C. (2001). Floristic structure and biomass distribution of a tropical seasonal rain forest in Xishuangbanna, southwest China. Biomass and Bioenergy, 21, 165–175.

    Article  Google Scholar 

  • Souza, C., Roberts, R., & Cochrane, M. (2005). Combining spectral and spatial information to map canopy damage from selective logging and forest fires. Remote Sensing of Environment, 98, 329–343.

    Article  Google Scholar 

  • Saint Louis, V. L., Kelly, C. A., Duchemin, E., Rudd, J. W. M., & Rosenberg, D. M. (2000). Reservoir surfaces as sources of greenhouse gases to the atmosphere: A global estimate. BioScience, 50, 766–775.

    Article  Google Scholar 

  • Torezan, J. M. D., & Silveira, M. (2000). The biomass of bamboo (Guadua weberbaueri Pilger) in open forest of the Southwestern Amazon. Ecotropica, 6, 71–76.

    Google Scholar 

  • Tremblay, A., Lambert, M., & Gagnon, L. (2004). Do hydroelectric reservoirs emit greenhouse gases? Environmental Management, 33, S509–S517.

    Article  Google Scholar 

  • Tremblay, A., Varfalvy, L., Roehm, C. & Garneau, M. (Eds.) (2005). Greenhouse gas emissions—fluxes and processes (732 pp). Berlin: Springer-Verlag.

    Google Scholar 

  • United Nations (1990). Atlas of Mineral Resources of the ESCAP Region—Lao PDR., Vol. 7, p 19.

  • Verhoef, W. (1984). Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model. Remote Sensing of Environment, 16, 125–141.

    Article  Google Scholar 

  • Verhoef, W., & Bach, H. (2003). Simulation of hyperspectral and directional radiance images using coupled biophysical and atmospheric radiative transfer models. Remote Sensing of Environment, 87, 23–41.

    Article  Google Scholar 

  • Yamakura, T., Hagihara, A., Sukardjo, S., & Ogawa, H. (1986). Aboveground biomass of tropical rain forest stands in Indonesian Borneo. Vegetatio, 68, 71–82.

    Google Scholar 

  • Zinke, P. J., Stangenberger, A. G., Post, W. M., Emanuel, W. R., & Olson, J. S. (1984). Worldwide organic soil carbon and nitrogen data. ORNL/TM-8857. Oak Ridge: Oak Ridge National Laboratory.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Descloux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Descloux, S., Chanudet, V., Poilvé, H. et al. Co-assessment of biomass and soil organic carbon stocks in a future reservoir area located in Southeast Asia. Environ Monit Assess 173, 723–741 (2011). https://doi.org/10.1007/s10661-010-1418-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1418-3

Keywords

Navigation