Skip to main content
Log in

Transgenic citrus expressing the antimicrobial gene Attacin E (attE) reduces the susceptibility of ‘Duncan’ grapefruit to the citrus scab caused by Elsinoë fawcettii

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Citrus scab, caused by Elsinoë fawcettii (anamorph Sphaceloma fawcettii), is a common foliar fungal disease affecting many citrus cultivars, including grapefruit. No commercial grapefruit cultivar is resistant to scab, and the disease results in severely blemished fruit which reduces its marketability. Transgenic ‘Duncan’ grapefruit trees expressing the antimicrobial attE gene were produced via Agrobacterium-mediated transformation. In in vitro leaf and greenhouse assays, several transgenic-lines had significantly lower susceptibility to E. fawcettii compared to the non-transformed control (P < 0.0001). In the greenhouse studies, sporulation on all transgenic lines except 1 was significantly reduced (P < 0.0001) but the level of sporulation over time did not correspond to disease severity ratings. Lesion size was also significantly reduced on transgenic lines compared to the non-transformed control (P < 0.0001) and the least susceptible line A-23 had the smallest lesions, but in general there was no correlation between lesion size and disease susceptibility. The level of attE mRNA was inversely related to the number of copies detected by Southern blot. The least susceptible line had a single inserted copy of the attE transgene whereas more susceptible lines had multiple copies. Since the attacin mode of action was thought to be specific to Gram-negative bacteria, it was unexpected to find that there was a significant activity against E. fawcettii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bitancourt, A. A., & Jenkins, A. E. (1936). Elsinoë fawcettii, the perfect stage of citrus scab fungus. Phytopathology, 26, 393–396.

    Google Scholar 

  • Broekaert, W. F., Cammue, B. P. A., De Bolle, M. F. C., Thevissen, K., De Samblanx, G. W., & Osborn, R. W. (1997). Antimicrobial peptides from plants. Critical Review of Plant Science, 16, 297–323.

    CAS  Google Scholar 

  • Brunner, E., Domhof, S., & Langer, F. (2002). Nonparametric analysis of longitudinal data in factorial experiments. New York: John Wiley & Sons.

    Google Scholar 

  • Burrow, M. D., Chlan, C. A., Sen, P., & Murai, N. (1990). High frequency generation of transgenic tobacco plants after modified leaf disk co-cultivation with Agrobacterium tumefaciens. Plant Molecular Biology Reporter, 8, 124–139.

    Article  Google Scholar 

  • Campo, S., Manrique, S., García-Martínez, J., & San Segundo, B. (2008). Production of cecropin A in transgenic rice plants has an impact on host gene expression. Plant Biotechnology Journal, 6, 585–608.

    Article  PubMed  CAS  Google Scholar 

  • Cardoso, S. C., Mendes, J. M. B., Camargo, R. L. B., Christiano, R. S. C., Filho, A. B., Vieira, M. L. C., et al. (2010). Transgenic sweet orange (Citrus sinensis L. Osbeck) expressing the attacin A gene for resistance to Xanthomonas citri subsp. citri. Plant Molecular and Biological Report, 28, 185–192.

    Article  CAS  Google Scholar 

  • Carlsson, A., Nystrom, T., de Cock, H., & Bennich, H. (1998). Attacin - an insect immune protein - binds LPS and triggers the specific inhibition of bacterial outer-membrane protein synthesis. Microbiology-Society for General Microbiology, 144, 2179–2188.

    CAS  Google Scholar 

  • Carlsson, A., Engstrom, P., Palva, E. T., & Bennich, H. (1991). Attacin, an antibacterial protein from Hyalophora cecropia, inhibits synthesis of outer membrane proteins in Escherichia coli by interfering with omp gene transcription. Infection and Immunity, 59, 3040–3045.

    Google Scholar 

  • Coca, M., Peñas, G., Gómez, J., Campo, S., Bortolotti, C., Messeguer, J., et al. (2006). Enhanced resistance to the rice blast fungus Magnaporthe grisea conferred by expression of a cecropin A gene in transgenic rice. Planta, 223, 392–406.

    Article  PubMed  CAS  Google Scholar 

  • DeLucca, A. J., Bland, J. M., Jacks, T. J., Grimm, C., Cleveland, T. E., & Walsh, T. J. (1997). Fungicidal activity of cecropin A. Antimicrobial Agents and Chemotherapy, 4, 481–483.

    Google Scholar 

  • De Lucca, A. J., Bland, J. M., Grimm, C., Jacks, T. J., Cary, J. W., Jaynes, J. M., et al. (1998). Fungicidal properties, sterol binding, and proteolytic resistance of the synthetic peptide D4E1. Canadian Journal of Microbiology, 44, 514–520.

    Article  PubMed  Google Scholar 

  • Dewdney, M. M., & Timmer, L. W. (2010) Citrus scab. In M. E. Rogers, M. M. Dewdney, & T. M. Spann (Eds), 2011 Florida Citrus Pest Management Guide: University of Florida, IFAS. pp. 3. http://edis.ifas.ufl.edu/cg020).

  • Dutt, M., & Grosser, J. (2009). Evaluation of parameters affecting Agrobacterium-mediated transformation of citrus. Plant Cell, Tissue and Organ Culture, 98, 331–340.

    Article  CAS  Google Scholar 

  • Dutt, M., Orbovic, V., & Grosser, J. W. (2009). Cultivar dependent gene transfer into citrus using Agrobacterium. Proceedings of the Florida State Horticultural Society, 122, 85–89.

    Google Scholar 

  • Dutt, M., Madhavaraj, J., & Grosser, J. W. (2010). Agrobacterium tumefaciens-mediated genetic transformation and plant regeneration from a complex tetraploid hybrid citrus rootstock. Scientia Horticulturae, 123, 454–458.

    Article  CAS  Google Scholar 

  • Engstrom, P., Carlsson, A., Engstrom, Å., Tao, Z.-J., & Bennich, H. (1984). The antibacterial effect of attacins from the silk moth Hyalophora cecropia is directed against the outer membrane of Escherichia coli. EMBO Journal, 3, 3347–3351.

    PubMed  CAS  Google Scholar 

  • Gelvin, S. B. (2000). Agrobacterium and plant genes involved in T-DNA transfer and integration. Annual Reviews of Plant Physiology and Plant Molecular Biology, 51, 223–256.

    Article  CAS  Google Scholar 

  • Gmitter, F. G., Jr. (2010). Origin, evolution, and breeding of the grapefruit. In J. Janick (Ed.), Plant breeding reviews, volume 13. Oxford: John Wiley & Sons, Inc. doi:10.1002/9780470650059.ch10.

    Google Scholar 

  • Grosser, J. W., & Gmitter, F. G., Jr. (2010). Protoplast fusion in the production of tetraploids and triploids: Applications in scion and rootstock breeding. Plant Cell Tissue and Organ Culture, 104, 343–357.

    Article  Google Scholar 

  • Hobbs, S. L., Kpodar, P., & Delong, C. M. (1990). The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Molecular Biology, 15, 851–864.

    Article  PubMed  CAS  Google Scholar 

  • Hood, E. E., Gelvin, S. B., Melchers, L. S., & Hoekema, A. (1993). New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Research, 2, 208–218.

    Article  CAS  Google Scholar 

  • Hultmark, D., Engstrom, A., Andersson, K., Steiner, H., Bennich, H., & Boman, H. G. (1983). Insect immunity. Attacins, a family of antibacterial proteins from Hyalophora cecropia. EMBO Journal, 2, 571–576.

    PubMed  CAS  Google Scholar 

  • Hyun, J. W., Yi, S. H., Mackenzie, S. J., Timmer, L. W., Kim, K. S., Kang, S. K., et al. (2009). Pathotypes and genetic relationship of worldwide collections of Elsinoë spp. causing scab diseases of citrus. Phytopathology, 99, 721–728.

    Article  PubMed  CAS  Google Scholar 

  • Ieki, H. (1981). Resistance of Citrus to scab. International Citrus Congress (4th : 1981 : Tokyo, Japan) International Society of Citriculture, 1, 340–344.

  • Jaynes, J. M., Nagpala, P., Destéfano-Beltran, L., Huang, J. H., Kim, J., Denny, T., et al. (1993). Expression of a cercopin B lytic peptide analog in transgenic tobacco confers enhanced resistance to bacterial wilt caused by Pseudomonas solanacearum. Plant Science, 89, 43–53.

    Article  CAS  Google Scholar 

  • Kim, K. W., Hyun, J. W., & Park, E. W. (2004). Cytology of cork layer formation of citrus and limited growth of Elsinoë fawcettii in scab lesions. European Journal of Plant Pathology, 110, 129–138.

    Article  Google Scholar 

  • Ko, K., Norelli, J. L., Reynoird, J.-P., Boresjza-Wysocka, E., Brown, S. K., & Aldwinckle, H. S. (2000). Effect of untranslated leader sequence of AMV RNA4 and signal peptide of pathogenesis-related protein 1b on attacin gene expression, and resistance to fire blight in transgenic apple. Biotechnology Letters, 22, 373–381.

    Article  CAS  Google Scholar 

  • Kumar, S., & Fladung, M. (2001). Gene stability in transgenic aspen (Populus). II. Molecular characterization of variable expression of transgene in wild and hybrid aspen. Planta, 213, 731–740.

    Article  PubMed  CAS  Google Scholar 

  • Li, Z., Jayasankar, S., & Gray, D. J. (2001). Expression of a bifunctional green fluorescent protein (GFP) fusion marker under the control of three constitutive promoters and enhanced derivatives in transgenic grape (Vitis vinifera). Plant Science, 160, 877–887.

    Article  PubMed  CAS  Google Scholar 

  • Martin, D. I., & Whitelaw, E. (1996). The vagaries of variegating transgenes. Bioessays, 18, 919–923.

    Article  PubMed  CAS  Google Scholar 

  • Mayerhofer, R., Koncz-Kalman, Z., Nawrath, C., Bakkeren, G., Crameri, A., Angelis, K., et al. (1991). T-DNA integration: a model of illegitimate recombination in plants. EMBO Journal, 10, 697–704.

    PubMed  CAS  Google Scholar 

  • Mitsuhara, I., Matsufuru, H., Ohshima, M., Kaku, H., Nakajima, Y., Murai, N., et al. (2000). Induced expression of sarcotoxin1A enhanced host resistance against both bacterial and fungal pathogens in transgenic tobacco. Molecular Plant-Microbe Interactions, 13, 860–868.

    Article  PubMed  CAS  Google Scholar 

  • Norelli, J. L., Aldwinckle, H. S., Destéfano-Beltrán, L., & Jaynes, J. M. (1994). Transgenic ‘Mailing 26’ apple expressing the attacin E gene has increased resistance to Erwinia amylovora. Euphytica, 77, 123–128.

    Article  CAS  Google Scholar 

  • Norelli, J. L., Borejsza-Wysocka, E., Reynoird, J.-P., & Aldwinckle, H. S. (2000). Transgenic ‘Royal Gala’ apple expressing Attacin E has increased field resistance to Erwinia amylovora (fire blight). Acta Hortculturae, 538, 631–633.

    CAS  Google Scholar 

  • Osusky, M., Zhou, G., Osuska, L., Hancock, R. E., Kay, W. W., & Misra, S. (2000). Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens. Nature Biotechology, 18, 1162–1166.

    Article  CAS  Google Scholar 

  • Pena, L., Cervera, M., Ghorbel, R., Domínguez, A., Fagoaga, C., Juarez, J., et al. (2007). Genetic transformation. In I. A. Khan (Ed.), Citrus genetics, breeding, and biotechnology (pp. 329–344). Wallingford: CABI International.

    Chapter  Google Scholar 

  • Rajasekaran, K., Stromberg, K. D., Cary, J. W., & Cleveland, T. E. (2001). Broad-Spectrum Antimicrobial Activity in vitro of the Synthetic Peptide D4E1. Journal of Agricultural and Food Chemistry, 49, 2799–2803.

    Article  PubMed  CAS  Google Scholar 

  • Reddy, M. S., Dinkins, R. D., & Collins, G. B. (2003). Gene silencing in transgenic soybean plants transformed via particle bombardment. Plant Cell Report, 21, 676–683.

    CAS  Google Scholar 

  • Reynoird, J. P., Mourgues, F., Norelli, J., Aldwinckle, H. S., Brisset, M. N., & Chevreau, E. (1999). First evidence for improved resistance to fire blight in transgenic pear expressing the attacin E gene from Hyalophora cecropia. Plant Science, 149, 23–31.

    Article  CAS  Google Scholar 

  • Shah, D. A., & Madden, L. V. (2004). Nonparametric analysis of ordinal data in designed factorial experiments. Phytopathology, 94, 33–43.

    Article  PubMed  CAS  Google Scholar 

  • Thevissen, K., Ferket, K. K. A., François, I. E. J. A., & Cammue, B. P. A. (2003). Interactions of antifungal plant defensins with fungal membrane components. Peptides, 24(11), 1705–1712.

    Article  PubMed  CAS  Google Scholar 

  • Timmer, L. W. (2000). Scab diseases. In L. W. Timmer, S. M. Garnsey, & J. H. Graham (Eds.), Compendium of citrus diseases (2nd ed., pp. 31–32). St. Paul: American Phytopathological Society Press.

    Google Scholar 

  • Timmer, L. W., & Zitko, S. E. (1993) Techniques for greenhouse evaluation of fungicides for control of citrus scab. In E. Rabe (Ed.), Proceedings of the IV Congress of the International Society of Citrus Nurserymen (pp. 125–129). Johannesburg: The South African Citrus Nurserymen’s Association.

  • Timmer, L. W., Priest, M., Broadbent, P., & Tan, M.-K. (1996). Morphological and pathological characterization of species of Elsinoë causing scab diseases of citrus. Phytopathology, 86, 1032–1038.

    Article  Google Scholar 

  • Timmer, L. W., Roberts, P. D., Chung, K. R., & Bhatia, A. (2001). Citrus scab (PP153): University of Florida Institute of Food and Agricultural Sciences. http://edis.ifas.ufl.edu/ch014.

  • Timmer, L. W., Mondal, S. N., Peres, N. A. R., & Bhatia, A. (2004). Fungal diseases of fruit and foliage of citrus trees. In S. A. M. H. Naqvi (Ed.), Diseases of Fruits and Vegetables – Diagnosis and Management, vol. 1, (pp. 191–227). Dordrecht: Kluwer Academic Publishers.

  • Tollin, M., Bergman, P., Svenberg, T., Jörnvall, H., Gudmundsson, G. H., & Agerberth, B. (2003). Antimicrobial peptides in the first line defence of human colon mucosa. Peptides, 24, 523–530.

    Article  PubMed  CAS  Google Scholar 

  • Van Attikum, H., Bundock, P., & Hooykaas, P. J. J. (2001). Non-homologous end-joining proteins are required for Agrobacterium T-DNA integration. EMBO Journal, 20, 6550–6558.

    Article  PubMed  Google Scholar 

  • van Hofsten, P., Faye, I., Kockum, K., Lee, J. Y., Xanthopoulos, K. G., Boman, I. A., et al. (1985). Molecular cloning, cDNA sequencing, and chemical synthesis of cecropin B from Hyalophora cecropia. Proceedings of the National Academy of Science USA, 82, 2240–2243.

    Article  Google Scholar 

  • Whiteside, J. O. (1975). Biological characteristics of Elsinoë fawcettii pertaining to the epidemiology of sour orange scab. Phytopathology, 65, 1170–1177.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Herb Aldwinckle, NYSAES Cornell University, USA for providing us with the pCa2Att/121 clone and Drs. Dennis Gray and Zhijian Li, MREC, University of Florida, USA for providing us with a binary vector containing the bifunctional nptII/egfp fusion gene.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Dewdney.

Additional information

S. N. Mondal and M. Dutt contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mondal, S.N., Dutt, M., Grosser, J.W. et al. Transgenic citrus expressing the antimicrobial gene Attacin E (attE) reduces the susceptibility of ‘Duncan’ grapefruit to the citrus scab caused by Elsinoë fawcettii . Eur J Plant Pathol 133, 391–404 (2012). https://doi.org/10.1007/s10658-011-9912-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-011-9912-1

Keywords

Navigation