Skip to main content
Log in

Priming: it’s all the world to induced disease resistance

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

After infection by a necrotising pathogen, colonisation of the roots with certain beneficial microbes, or after treatment with various chemicals, many plants establish a unique physiological situation that is called the ‘primed’ state of the plant. In the primed condition, plants are able to ‘recall’ the previous infection, root colonisation or chemical treatment. As a consequence, primed plants respond more rapidly and/or effectively when re-exposed to biotic or abiotic stress, a feature that is frequently associated with enhanced disease resistance. Though priming has been known as a component of induced resistance for a long time, most progress in the understanding of the phenomenon has been made over the past few years. Here we summarize the current knowledge of priming and its relevance for plant protection in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

BABA:

β-aminobutyric acid

IR:

induced resistance

ISR:

induced systemic resistance

MAMP:

microbe-associated molecular pattern

SA:

salicylic acid

SAR:

systemic acquired resistance

References

  • Agrawal, A. A., Strauss, S. Y., & Stout, M. J. (1999). Costs of induced responses and tolerance to herbivory in male and female fitness components of wild radish. Evolution, 53, 1093–1104.

    Article  Google Scholar 

  • Ahn, I.-P., Kim, S., & Lee, Y.-H. (2005). Vitamin B1 functions as an activator of plant disease resistance. Plant Physiology, 138, 1505–1515.

    Article  PubMed  CAS  Google Scholar 

  • Ahn, I.-P., Kim, S., Lee, Y.-H., & Suh, S.-C. (2007). Vitamin B1-induced priming is dependent on hydrogen peroxide and the NPR1 gene in Arabidopsis. Plant Physiology, 143, 838–848.

    Article  PubMed  CAS  Google Scholar 

  • Baldwin, I. T. (1998). Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proceedings of the National Academy of Sciences of the USA, 95, 8113–8118.

    Article  PubMed  CAS  Google Scholar 

  • Baldwin, I. T., & Schultz, J. C. (1983). Rapid changes in tree chemistry induced by damage: evidence for communication between plants. Science, 221, 277–279.

    Article  PubMed  CAS  Google Scholar 

  • Bartlett, D. W., Clough, J. M., Godwin, J. R., Hall, A. A., Hamer, M., & Parr-Dobrzanski, B. (2002). The strobilurin fungicides. Pest Management Science, 58, 649–662.

    Article  PubMed  CAS  Google Scholar 

  • Boch, J., Verbsky, M. L., Robertson, T. L., Larkin, J. C., & Kunkel, B. N. (1998). Analysis of resistance gene-mediated defence responses in Arabidopsis thaliana plants carrying a mutation in CPR5. Molecular Plant-Microbe Interactions, 12, 1196–1206.

    Article  Google Scholar 

  • Bowling, S. A., Clarke, J. D., Liu, Y., Klessig, D. F., & Dong, X. (1997). The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell, 9, 1573–1584.

    Article  PubMed  CAS  Google Scholar 

  • Bowling, S. A., Guo, A., Cao, H., Gordon, A. S., Klessig, D., & Dong, X. (1994). A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance. Plant Cell, 6, 1845–1857.

    Article  PubMed  CAS  Google Scholar 

  • Cao, H., Bowling, S. A., Gordon, A. S., & Dong, X. (1994). Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell, 8, 1583–1592.

    Article  Google Scholar 

  • Cipollini, D. F. (2002). Does competition magnify the fitness costs of induced responses in Arabidopsis thaliana? A manipulative approach. Oecologia, 131, 514–520.

    Article  Google Scholar 

  • Cohen, Y. R. (2002). β-Aminobutyric acid-induced resistance against plant pathogens. Plant Disease, 86, 448–457.

    Article  CAS  Google Scholar 

  • Conrath, U. (2006). Systemic acquired resistance. Plant Signaling & Behavior, 1, 179–184.

    Google Scholar 

  • Conrath, U., Beckers, G. J. M., Flors, V., García-Agustín, P., Jakab, G., Mauch, F., Prime-A-Plant Group, et al. (2006). Priming: getting ready for battle. Molecular Plant-Microbe Interactions 2006, 19, 1062–1071.

    Article  CAS  Google Scholar 

  • Conrath, U., Chen, Z., Ricigliano, J. R., & Klessig, D. F. (1995). Two inducers of plant defence responses, 2,6-dichloroisonicotinic acid and salicylic acid, inhibit catalase activity in tobacco. Proceedings of the National Academy of Sciences of the USA, 92, 7143–7147.

    Article  PubMed  CAS  Google Scholar 

  • Conrath, U., Pieterse, C. M. J., & Mauch-Mani, B. (2002). Priming in plant–pathogen interactions. Trends in Plant Sciences, 7, 210–216.

    Article  CAS  Google Scholar 

  • Cools, H. J., & Ishii, H. (2002). Pretreatment of cucumber plants with acibenzolar-S-methyl systemically primes a phenylalanine ammonia-lyase (PAL1) for enhanced expression upon attack with a pathogenic fungus. Physiological and Molecular Plant Pathology, 61, 273–280.

    Article  CAS  Google Scholar 

  • Delaney, T. P., Friedrich, L., & Ryals, J. A. (1995). Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proceedings of the National Academy of Sciences of the USA, 92, 6602–6606.

    Article  PubMed  CAS  Google Scholar 

  • Delaney, T. P., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K., Negrotto, D., et al. (1994). A central role of salicylic acid in plant disease resistance. Science, 266, 1247–1249.

    Article  PubMed  CAS  Google Scholar 

  • Dong, X. (2001). Genetic dissection of systemic acquired resistance. Current Opinion in Plant Biology, 4, 309–314.

    Article  PubMed  CAS  Google Scholar 

  • Durrant, W. E., & Dong, X. (2004). Systemic acquired resistance. Annual Review of Phytopathology, 42, 185–209.

    Article  PubMed  CAS  Google Scholar 

  • Engelberth, J., Alborn, H. T., Schmelz, E. A., & Tumlinson, J. H. (2004). Airborne signals prime plants against insect herbivore attack. Proceedings of the National Academy of Sciences of the USA, 101, 1781–1785.

    Article  PubMed  CAS  Google Scholar 

  • Friedrich, L., Lawton, K., Ruess, W., Masner, P., Specker, N., Gut-Rella, M., et al. (1996). A benzothiadiazole derivative induces systemic acquired resistance in tobacco. Plant Journal, 10, 61–70.

    Article  CAS  Google Scholar 

  • Frye, C. A., & Innes, R. W. (1998). An Arabidopsis mutant with enhanced resistance to powdery mildew. Plant Cell, 10, 947–956.

    Article  PubMed  CAS  Google Scholar 

  • Fuster, M. D., García-Puig, D., Ortuño, A., Botía, J. M., Sabater, F., Porras, I., et al. (1995). Selection of Citrus highly productive in secondary metabolites of industrial interest. Modulation of synthesis and/or accumulation processes. In C. García-Viguera, M. Castañer, M. I. Gil, F. Ferreres, & F. A. Tomás-Barberán (Eds.) Current trends in fruit and vegetable phytochemistry (pp. 81–85). Madrid: CSIC.

    Google Scholar 

  • Gaffney, T., Friedrich, L., Vernoij, B., Negrotto, D., Nye, G., Uknes, S., et al. (1993). Requirement of salicylic acid for the induction of systemic acquired resistance. Science, 261, 754–756.

    Article  PubMed  CAS  Google Scholar 

  • Görlach, J., Volrath, S., Knauf-Beiter, G., Hengy, G., Beckhove, U., Kogel, K.-H., et al. (1996). Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell, 8, 629–643.

    Article  PubMed  Google Scholar 

  • He, C. Y., Hsiang, T., & Wolyn, D. J. (2002). Induction of systemic disease resistance and pathogen defence responses in Asparagus officinalis inoculated with non-pathogenic strains of Fusarium oxysporum. Plant Pathology, 51, 225–230.

    Article  Google Scholar 

  • He, P., Warren, R. F., Zhao, T., Shan, L., Zhu, L., Tang, X., et al. (2001). Overexpression of PTI5 in tomato potentiates pathogen-induced defence gene expression and enhances disease resistance to Pseudomonas syringae pv. tomato. Molecular Plant-Microbe Interactions, 14, 1453–1457.

    Article  PubMed  CAS  Google Scholar 

  • He, C. Y., & Wolyn, D. J. (2005). Potential role for salicylic acid in induced resistance of asparagus roots to Fusarium oxysporum f.sp. asparagi. Plant Pathology, 54, 227–232.

    Article  CAS  Google Scholar 

  • Heidel, A. J., Clarke, J. D., Antonovics, J., & Dong, X. (2004). Fitness costs of mutations affecting the systemic acquired resistance pathway in Arabidopsis thaliana. Genetics, 168, 2197–2206.

    Article  PubMed  CAS  Google Scholar 

  • Heil, M., Hilpert, A., Kaiser, W., & Linsenmair, K. E. (2000). Reduced growth and seed set following chemical induction of pathogen defence: Does systemic acquired resistance (SAR) incur allocation costs? Journal of Ecology, 88, 645–654.

    Article  CAS  Google Scholar 

  • Heil, M., & Kost, C. (2006). Priming of indirect defences. Ecology Letters, 9, 813–817.

    Article  PubMed  Google Scholar 

  • Heil, M., & Silva Bueno, J. C. (2007). Within-plant signalling by volatiles leads to induction and priming of an indirect plant defence in nature. Proceedings of the National Academy of Sciences of the USA, 104, 5467–5472.

    Article  PubMed  CAS  Google Scholar 

  • Herms, S., Seehaus, K., Koehle, H., & Conrath, U. (2002). A strobilurin fungicide enhances the resistance of tobacco against Tobacco mosaic virus and Pseudomonas syringae pv. tabaci. Plant Physiology, 130, 120–127.

    Article  PubMed  CAS  Google Scholar 

  • Jakab, G., Ton, J., Flors, V., Zimmerli, L., Métraux, J.-P., & Mauch-Mani, B. (2005). Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Physiology, 139, 267–274.

    Article  PubMed  CAS  Google Scholar 

  • Katz, V. A., Thulke, O. U., & Conrath, U. (1998). A benzothiadiazole primes parsley cells for augmented elicitation of defence responses. Plant Physiology, 117, 1333–1339.

    Article  PubMed  CAS  Google Scholar 

  • Kauss, H., Franke, R., Krause, K., Conrath, U., Jeblick, W., Grimmig, B., et al. (1993). Conditioning of parsley (Petroselinum crispum) suspension cells increases elicitor-induced incorporation of cell wall phenolics. Plant Physiology, 102, 459–466.

    PubMed  CAS  Google Scholar 

  • Kauss, H., & Jeblick, W. (1995). Pretreatment of parsley suspension cultures with salicylic acid enhances spontaneous and elicited production of H2O2. Plant Physiology, 108, 1171–1178.

    PubMed  CAS  Google Scholar 

  • Kauss, H., Theisinger-Hinkel, E., Mindermann, R., & Conrath, U. (1992). Dichloroisonicotinic and salicylic acid, inducers of systemic acquired resistance, enhance fungal elicitor responses in parsley cells. Plant Journal, 2, 655–660.

    CAS  Google Scholar 

  • Kessler, A., Halitschke, R., Diezel, C., & Baldwin, I. T. (2006). Priming of plant defence responses in nature by airborne signalling between Artemisia tridentata and Nicotiana attenuata. Oecologia, 148, 280–292.

    Article  PubMed  Google Scholar 

  • Kessmann, H., Staub, T., Hofmann, C., Maetzke, T., Herzog, J., Ward, E., et al. (1994). Induction of systemic acquired disease resistance in plants by chemicals. Annual Review of Phytopathology, 32, 439–459.

    Article  PubMed  CAS  Google Scholar 

  • Kim, H. K., Oh, S.-R., Lee, H.-K., & Huh, H. (2001). Benzothiadiazole enhances the elicitation of rosmarinic acid production in a suspension culture of Agastache rugosa. Biotechnology Letters, 23, 55–60.

    Article  Google Scholar 

  • Koehle, H., Conrath, U., Seehaus, K., Niedenbrueck, M., Tavares-Rodrigues, M.-A., Sanchez, W., et al. (2006). Method of inducing virus tolerance of plants. US Patent 20060172887.

  • Koehle, H., Herms, S., & Conrath, U. (2003). Method for immunizing plants against bacterioses. Patent Application No. WO2003075663.

  • Koganezawa, H., Sato, T., & Sasaya, T. (1998). Effects of Probenazole and saccharin on symptom appearance of Tobacco mosaic virus in tobacco. Annals of the Phytopathological Society of Japan, 64, 80–84.

    CAS  Google Scholar 

  • Kohler, A., Schwindling, S., & Conrath, U. (2002). Benzothiadiazole-induced priming for potentiated responses to pathogen infection, wounding, and infiltration of water into leaves requires the NPR1/NIM1 gene in Arabidopsis. Plant Physiology, 128, 1046–1056.

    Article  PubMed  CAS  Google Scholar 

  • Korves, T., & Bergelson, J. (2004). A novel cost of R gene resistance in the presence of disease. The American Naturalist, 163, 489–504.

    Article  PubMed  Google Scholar 

  • Kuć, J. (1987). Translocated signals for plant immunization. Annals of the New York Academy of Sciences, 494, 221–223.

    Article  Google Scholar 

  • Kuć, J. (2001). Concepts and direction of induced systemic resistance in plants and its application. European Journal of Plant Pathology, 107, 7–12.

    Google Scholar 

  • Latunde-Dada, A. O., & Lucas, J. A. (2001). The plant defence activator acibenzolar-S-methyl primes cowpea [Vignia unguiculata (L.) Walp.] seedlings for rapid induction of resistance. Physiological and Molecular Plant Pathology, 58, 199–208.

    Article  CAS  Google Scholar 

  • Lawton, K. A., Friedrich, L., Hunt, M., Weymann, K., Delaney, T., Kessmann, H., et al. (1996). Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant Journal, 10, 71–82.

    Article  PubMed  CAS  Google Scholar 

  • Leeman, M., van Pelt, J. A., Hendrickx, M. J., Scheffer, R. J., Bakker, P. A. H. M., & Schippers, B. (1995). Biocontrol of Fusarium wilt of radish in commercial greenhouse trials by seed treatment with Pseudomonas fluorescens WCS374. Phytopathology, 85, 1301–1305.

    Article  Google Scholar 

  • Maleck, K., Levine, A., Eulgem, T., Morgan, A., Schmid, J., Lawton, K. A., et al. (2000). The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nature Genetics, 26, 403–410.

    Article  PubMed  CAS  Google Scholar 

  • Mauch, F., Mauch-Mani, B., Gaille, C., Kull, B., Haas, D., & Reimmann, C. (2001). Manipulation of salicylate content in Arabidopsis thaliana by the expression of an engineered bacterial salicylate synthase. Plant Journal, 25, 66–67.

    Article  Google Scholar 

  • Mur, L. A. J., Brown, I. R., Darby, R. M., Bestwick, C. S., Bi, Y.-M., Mansfield, J. W., et al. (2000). A loss of resistance to avirulent bacterial pathogens in tobacco is associated with the attenuation of a salicylic acid-potentiated oxidative burst. Plant Journal, 23, 609–621.

    Article  PubMed  CAS  Google Scholar 

  • Mur, L. A. J., Naylor, G., Warner, S. A. J., Sugars, J. M., White, R. F., & Draper, J. (1996). Salicylic acid potentiates defence gene expression in tissue exhibiting acquired resistance to pathogen attack. Plant Journal, 9, 559–571.

    Article  CAS  Google Scholar 

  • Newmann, M.-A., Dow, J. M., Molinaro, A., & Parrilli, M. (2007). Priming, induction and modulation of plants defence responses by bacterial lipopolysaccharides. Journal of Endotoxin Research, 13, 69–84.

    Article  Google Scholar 

  • Ortuño, A., Botia, J. M., Fuster, M. D., Porras, I., García-Lidón, A., & del Río, J. A. (1997). Effect of scoparone (6–7-dimethoxicoumarin) biosynthesis on the resistance of tangelo Nova, Citrus paradisi and Citrus aurantium fruits against Phytophthora parasitica. Journal of Agriculture and Food Chemistry, 45, 2740–2743.

    Article  Google Scholar 

  • Paré, P. W., & Tumlinson, J. H. (1999). Plant volatiles as a defence against insect herbivores. Plant Physiology, 121, 325–332.

    Article  PubMed  Google Scholar 

  • Pieterse, C. M. J., van Wees, S. C. M., van Pelt, J. A., Knoester, M., Laan, G., Gerrits, H., et al. (1998). A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell, 10, 1571–1580.

    Article  PubMed  CAS  Google Scholar 

  • Pozo, M. J., Van Loon, L. C., & Pieterse, C. M. J. (2005). Jasmonates – Signals in plant–microbe interactions. Journal of Plant Growth Regulation, 23, 211–222.

    Google Scholar 

  • Prats, E., Rubiales, D., & Jorrín, J. (2002). Acibenzolar-methyl-induced resistance to sunflower rust (Puccinia helianthi) is associated with enhancement of coumarins on foliar surface. Physiological and Molecular Plant Pathology, 60, 155–162.

    Article  CAS  Google Scholar 

  • Rai, M., Acharya, D., Singh, A., & Varma, A. (2001). Positive growth responses of the medicinal plants Spilanthes calva and Withania somnifera to inoculation by Piriformospora indica in a field trial. Mycorrhiza, 11, 123–128.

    Article  Google Scholar 

  • Ruess, W., Mueller, K., Knauf-Beiter, G., Kunz, W., & Staub, T. (1996). Plant activator CGA 245704: An innovative approach for disease control in cereals and tobacco. Proceedings of the Brighton Crop Protect Conference – Pests and Diseases, 53–60.

  • Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H.-Y., & Hunt, M. D. (1996). Systemic acquired resistance. Plant Cell, 8, 1809–1819.

    Article  PubMed  CAS  Google Scholar 

  • Sauter, H. (2007). Strobilurins and other complex III inhibitors. In W. Krämer, & U. Schirmer (Eds.) Modern crop protection compounds (pp. 341–366). Weinheim: VCH-Wiley.

    Google Scholar 

  • Shirasu, K., Nakajima, H., Rajasekhar, K., & Dixon, R. A. (1997). Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defence mechanisms. Plant Cell, 9, 261–270.

    Article  PubMed  CAS  Google Scholar 

  • Siegrist, J., Muehlenbeck, S., & Buchenauer, H. (1998). Cultured parsley cells, a model system for the rapid testing of abiotic and natural substances as inducers of systemic acquired resistance. Physiological and Molecular Plant Pathology, 53, 223–238.

    Article  CAS  Google Scholar 

  • Stennis, M. J., Chandra, S., Ryan, C. A., & Low, P. S. (1998). Systemin potentiates the oxidative burst in cultured tomato cells. Plant Physiology, 117, 1031–1036.

    Article  PubMed  CAS  Google Scholar 

  • Thielert, W. (2006). A unique product: The story of the Imidacloprid stress shield. Pflanzenschutz-Nachrichten Bayer, 59, 73–86.

    CAS  Google Scholar 

  • Thulke, O. U., & Conrath, U. (1998). Salicylic acid has a dual role in the activation of defence-related genes in parsley. Plant Journal, 14, 35–42.

    Article  PubMed  CAS  Google Scholar 

  • Tian, D., Traw, M. B., Chen, J. Q., Kreitman, M., & Bergelson, J. (2003). Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature, 423, 74–77.

    Article  PubMed  CAS  Google Scholar 

  • Ton, J., D’Allessandro, M., Jourdie, V., Jakab, G., Karlen, D., Held, M., et al. (2006). Priming by airborne signals boosts direct and indirect resistance in maize. Plant Journal, 49, 16–26.

    Article  PubMed  Google Scholar 

  • Van Dam, N. M., & Baldwin, I. T. (2001). Competition mediates costs of jasmonate-induced defences, nitrogen acquisition and transgenerational plasticity in Nicotiana attenuata. Functional Ecology, 15, 406–415.

    Article  Google Scholar 

  • Van Hulten, M., Pelser, M., van Loon, L. C., Pieterse, C. M. J., & Ton, J. (2006). Costs and benefits of priming for defense in Arabidopsis. Proceedings of the National Academy of Sciences of the USA, 103, 5602–5607.

    Article  PubMed  Google Scholar 

  • Van Loon, L. C., Bakker, P. A. H. M., & Pieterse, C. M. J. (1998). Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology, 36, 453–483.

    Article  PubMed  Google Scholar 

  • Verhagen, B. W. M., Glazebrook, J., Zhu, T., Chang, H.-S., van Loon, L. C., & Pieterse, C. M. J. (2004). The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Molecular Plant-Microbe Interactions, 17, 895–908.

    Article  PubMed  CAS  Google Scholar 

  • Waller, F., Ahatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., et al. (2005). The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences of the USA, 102, 13386–13391.

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka, K., Nakashita, H., Klessig, D. F., & Yamaguchi, I. (2001). Probenazole induces systemic acquired resistance in Arabidopsis with a novel type of action. Plant Journal, 25, 149–157.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerli, L., Jakab, G., Métraux, J.-P., & Mauch-Mani, B. (2000). Potentiation of pathogen-specific defence mechanisms in Arabidopsis by β-aminobutyric acid. Proceedings of the National Academy of Sciences of the USA, 97, 12920–12925.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Research on priming in the Plant Biochemistry & Molecular Biology Group is supported by BASF, BASF Plant Science, Bayer CropScience, the German Science Foundation (DFG) and the Peter and Traudl Engelhorn Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Conrath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goellner, K., Conrath, U. Priming: it’s all the world to induced disease resistance. Eur J Plant Pathol 121, 233–242 (2008). https://doi.org/10.1007/s10658-007-9251-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-007-9251-4

Keywords

Navigation