Skip to main content

Advertisement

Log in

Human arsenic exposure and risk assessment at the landscape level: a review

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Groundwater contaminated with arsenic (As), when extensively used for irrigation, causes potentially long term detrimental effects to the landscape. Such contamination can also directly affect human health when irrigated crops are primarily used for human consumption. Therefore, a large number of humans are potentially at risk worldwide due to daily As exposure. Numerous previous studies have been severely limited by small sample sizes which are not reliably extrapolated to large populations or landscapes. Human As exposure and risk assessment are no longer simple assessments limited to a few food samples from a small area. The focus of more recent studies has been to perform risk assessment at the landscape level involving the use of biomarkers to identify and quantify appropriate health problems and large surveys of human dietary patterns, supported by analytical testing of food, to quantify exposure. This approach generates large amounts of data from a wide variety of sources and geographic information system (GIS) techniques have been used widely to integrate the various spatial, demographic, social, field, and laboratory measured datasets. With the current worldwide shift in emphasis from qualitative to quantitative risk assessment, it is likely that future research efforts will be directed towards the integration of GIS, statistics, chemistry, and other dynamic models within a common platform to quantify human health risk at the landscape level. In this paper we review the present and likely future trends of human As exposure and GIS application in risk assessment at the landscape level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abernathy, C. O., Liu, Y.-P., Longfellow, D., Aposhian, H. V., Beck, B., Fowler, B., et al. (1999). Arsenic: Health effects, mechanisms of actions, and research issues. Environmental Health Perspectives, 107, 593–597.

    Article  CAS  Google Scholar 

  • Abernathy, C. O., Thomas, D. J., & Calderon, R. L. (2003). Health effects and risk assessment of arsenic. American Society for Nutritional Sciences, 133, 1536S–1538S.

    Google Scholar 

  • Adair, B. M., Hudgens, E. E., Schmitt, M. T., Calderon, R. L., & Thomas, D. J. (2006). Total arsenic concentrations in toenails quantified by two techniques provide a useful biomarker of chronic arsenic exposure in drinking water. Environmental Research, 101(2), 213–220.

    Article  CAS  Google Scholar 

  • Ahmad, S. A. (2007). Sociocultural aspects of arsenicosis in Bangladesh: Community perspective. Journal of Environmental Science and Health Part A, 42(12), 1945–1958.

    Article  CAS  Google Scholar 

  • Al-Adamat, R. A. N., Foster, I. D. L., & Baban, S. M. J. (2003). Groundwater vulnerability and risk mapping for Basaltic aquifer of the Azraq basin of Jordan using GIS, Remote sensing and DRASTIC. Applied Geography, 23, 303–324.

    Article  Google Scholar 

  • Alam, M. G. M., Snow, E. T., & Tanaka, A. (2003). Arsenic and heavy metal contamination of vegetables grown in Samta village, Bangladesh. Science of the Total Environment, 308, 83–96.

    Article  CAS  Google Scholar 

  • Albertson, P. E., Girstmair, G., & Otero Valle, M. N., (1993). Development and application of a groundwater model integrated in the GIS GRASS. IAHS Publication, 211, 333 pp.

  • Ali, S. M. K., Edib, K., Pramanik, M. M. A., Alam, A. M. S., Rabbani, G. H., Anwar, K. S., Hossain, A., & Nasir, M. (2002). Nutritional status of patients with chronic arsenicosis in rural Bangladesh. Second International conference on Bangladesh Enviorment (ICBEN-2002), pp. 167–172.

  • Al Rmalli, S. W., Haris, P. I., Harrington, C. F., & Ayub, M. (2005). A survey of arsenic in foodstuffs on sale in the United Kingdom and imported from Bangladesh. Science of the Total Environment, 337(1–3), 23–30.

    Article  CAS  Google Scholar 

  • Anawar, H. M., Akai, J., Mostofa, K. M. G., Safiullah, S., & Tareq, S. M. (2002). Arsenic poisoning in groundwater: Health risk and geochemical sources in Bangladesh. Environment International, 27(7), 597–604.

    Article  CAS  Google Scholar 

  • Aral, M. M., & Maslia, M. L. (1996). Evaluation of human exposure to contaminated water supplies using GIS and modeling. In K. Kover & H. P. Nachtnebel (Eds.), Application of geographic information systems in hydrology and water resources management (pp. 243–252), IAHS Publication No. 235. Wallingford: IAHS Press.

  • Aslibekian, O., & Moles, R. (2003). Environmental risk assessment of metals contaminated soils at silvermines abandoned mine site, CO Tipperary, Ireland. Environmental Geochemistry and Health, 25(2), 247–266.

    Article  CAS  Google Scholar 

  • ATSDR. (1989). Toxicological profile of arsenic. In Agency for toxic substances and disease registry (ASTDR). Atlanta: US Public Health Services.

  • BADC. (2003). Survey Report on Irrigation Equipment and Irrigated Area in Boro 2003 Season, Bangladesh Agricultural Development Corporation (BADC).

  • Bae, M., Wantanabe, C., Inaoka, T., Sekiyama, M., Sudo, N., Bokul, M. H., et al. (2002). Arsenic in cooked rice in Bangladesh. The LANCET, 360(9348), 1839–1840.

    Article  CAS  Google Scholar 

  • Barrocu, G., & Biallo, G. (1993). Application of GIS for aquifer vulnerability evaluation. In K. Kover & H. P. Nachtnebel (Eds.), Application of geographic information systems in hydrology, water resources management (pp. 571–578). Wallingford: IAHS.

    Google Scholar 

  • Bartels, C. J., & Van Beurden, A. U. C. J. (1998). Using geographic and cartographic principles for environmental assessment and risk mapping. Journal of Hazardous Materials, 61, 115–124.

    Article  CAS  Google Scholar 

  • Basu, B., & Sil, S. (2004). Arsenic mapping for North 24—Pargana District of West Bengal using GIS and Remote Sensing technology. http://www.gisdevelopment.net/application/environment/water/mi03204pf.htm.

  • Bien, J. D., ter Meer, J., Rulkens, W. H., & Rijnaarts, H. H. M. (2004). A GIS based approach for the long-term prediction of human health risks at contaminated sites. Environmental Modelling and Assessment, 9, 221–226.

    Google Scholar 

  • Bober, M. L., Wood, D., & McBridge, R. A. (1996). Use of digital analysis and GIS to assess regional soil compaction risk. PE&RS: Photogrammetric Engineering & Remote Sensing, 62, 1397.

  • Buchet, J. P., Lauwerys, R., Vandevoorde, A., & Pycke, J. M. (1983). Oral daily intake of cadmium, lead, manganese, copper, chromium, mercury, calcium, zinc and arsenic in Belgium: a duplicate meal study. Food and Chemical Toxicology, 21(1), 19–24.

    Article  CAS  Google Scholar 

  • Caceres, D. D., Pino, P., Montesinos, N., Atalah, E., Amigo, H., & Loomis, D. (2005). Exposure to inorganic arsenic in drinking water and total urinary arsenic concentration in Chilean Population. Environmental Research, 98(2), 151–159.

    Article  CAS  Google Scholar 

  • Caussy, D., Gochfeld, M., Gurzau, E., Neagu, C., & Ruedel, H. (2003). Lessons from case studies of metals: Investigating exposure, bioavailability, and risk. Ecotoxicology and Environmental Safety, 56, 45–51.

    Article  CAS  Google Scholar 

  • Chen, C.-J., Hsu, L.-I., Wang, C.-H., Shih, W.-L., Hsu, Y.-H., Tseng, M.-P., et al. (2005). Biomakers of exposure, effect, and susceptibility of arsenic-induced health hazards in Taiwan. Toxicology and Applied Pharmacology, 206(2), 198–206.

    Article  CAS  Google Scholar 

  • Chen, Z., Huang, G. H., Chakma, A. (1998). Integrated environmental risk assessment through a GIS based decision-support system. Paper presented at the ESRI International User Conference, San Diego, USA.

  • Christensen, J. M. (1995). Human exposure to toxic metal: Factors influencing interpretation of biomonitoring results. The Science of the Total Environment, 166, 89–135.

    Article  CAS  Google Scholar 

  • CIA. (2006). World Fact Book, www.cia.gov/cia/publications/factbook.

  • Dabeka, R. W., McKenzie, A. D., Lacroix, G. M., Cleroux, C., Bowe, S., Graham, R. A., et al. (1993). Survey of arsenic in total diet food composites and estimation of the dietary intake of arsenic by Canadian adults and children. Journal of AOAC International, 76(1), 14–25.

    CAS  Google Scholar 

  • Dabeka, R. W., McKenzie, A. D., & Lacroix, G. M. (1987). Dietary intakes of lead, cadmium, arsenic and fluoride by Canadian adults: A 24-hour duplicate diet study. Food Additives and Contaminants, 4(1), 89–101.

    CAS  Google Scholar 

  • Das, P. K., Mitra, A. K., Sengupta, P. K., Hossain, A., Islam, F., & Rabbani, G. H. (2004). Arsenic concentration in rice, vegetables, and fish in Bangladesh: A preliminary study. Environment International, 30(3), 383–387.

    Article  CAS  Google Scholar 

  • Del Razo, L. M., Garcia-Vargas, G. G., Garcia-Salcedo, J., Sanmiguel, M. F., Rivera, M., Hernandez, M. C., et al. (2002). Arsenic levels in cooked food and assessment of adult dietray intake of arsenic in the Region Lagunera, Mexico. Food and Chemical Toxicology, 40(10), 1423–1431.

    Article  CAS  Google Scholar 

  • de Paz, J. M., & Ramos, C. (2002). Linkage of a geographical information system with the gleams model to assess nitrate leaching in agricultural areas. Environmental Pollution, 118, 249–258.

    Article  Google Scholar 

  • Dokkum, W. V., De Vos, R. H., Muys, T. H., & Wesstra, J. A. (2007). Minerals and trace elements in total diets in the Netherlands. British Journal of Nutrition, 61(1), 7–15.

    Article  Google Scholar 

  • Duker, A. A. (2005). Spatial analysis of factors implicated in mycobacterium ulcerans infection in Ghana (pp. 1–155). Unpublished Ph.D. Thesis Enschede: ITC.

  • Duxbury, J. M., Mayer, A. B., Lauren, J. G., & Hassan, N. (2003). Food chain aspects of arsenic contamination in Bangladesh: Effects on quality and productivity of rice. Journal of Environmental Science and Health, A38(1), 61–69.

    Article  CAS  Google Scholar 

  • Emmi, P. C., & Horton, C. A. (1996). Seismic risk assessment, accuracy requirements, and GIS based sensitivity analysis. In M. F. Goodchild, L. T. Steyaert, B. O. Parks, C. Johnston, D. Maidment, D. Crane, & S. Glendinning (Eds.), GIS and environmental modeling: Progress and research issues (pp. 191–195). Fort Collins: GIS World Books.

    Google Scholar 

  • Engel, B., Navulur, K., Cooper, B., & Hahn, L. (1996). Estimating groundwater vulnerability to nonpoint source pollution from nitrates and pesticides on a regional scale. In K. Kover & H. P. Nachtnebel (Eds.), Application of geographic information systems in hydrology, water resources management (pp. 521–526). Wallingford: IAHS.

    Google Scholar 

  • Fedra, K. (1993). GIS and environmental modeling. In M. F. Goodchild, B. O. Parks, & L. T. Steyaert (Eds.), Environmental modeling with GIS (pp. 35–50). New York: Oxford University Press.

    Google Scholar 

  • Fedra, K. (1996). Distributed models and embedded GIS: Integration strategies and case studies. In M. F. Goodchild, L. T. Steyaert, B. O. Parks, C. Jhonston, D. Maidment, M. Crane, & S. Glendinning (Eds.), GIS and environmental modelling: Progress and research issues (pp. 413–418). Fort Collins: GIS World.

    Google Scholar 

  • Forman, R. T. T., & Gordon, M. (1986). Landscape ecology. New York: Wiley.

    Google Scholar 

  • Foster, J. A., & McDonald, A. T. (2000). Assessing pollution risks to water supply intakes using geographical information systems (GIS). Environmental Modelling & Software, 15(3), 225–234.

    Article  Google Scholar 

  • Frysinger, S. P. (1996). Environmental decision support systems (EDSS): An open architecture integrating modeling and GIS. In M. F. Goodchild, L. T. Steyaert, B. O. Parks, C. Jhonston, D. Maidment, M. Crane, & S. Glendinning (Eds.), GIS and environmental modelling: Progress and research issues (pp. 357–362). Fort Collins: GIS World.

    Google Scholar 

  • Fytianos, K., & Christophoridis, C. (2004). Nitrate, arsenic and chloride pollution of drinking water in northern Greece, elaboration by applying GIS. Environmental Monitoring and Assessment, 93(1), 55–67.

    Article  CAS  Google Scholar 

  • Gartrell, M. J., Craun, J. C., Podrebarac, D. S., & Gunderson, E. L. (1985). Pesticides, selected elements, and other chemicals in infant and toddler total diet samples, October 1978–September 1979. Journal of Association of Official Analytical Chemists, 66(5), 842–861.

    CAS  Google Scholar 

  • Gay, J. R., & Korre, A. (2006). A spatially-evaluated methodology for assessing risk to a population from contaminated land. Environmental Pollution, 142, 227–234.

    Article  CAS  Google Scholar 

  • Gochfeld, M. (1998). Principles of toxicology. In R. Wallace (Ed.), Maxcy-Rosenau-Last. Public health & preventive medicine (14th ed.). Stamford: Appleton-Lange.

    Google Scholar 

  • Goodchild, M. F., Parks, B. O., & Steyaert, L. T. (Eds.). (1993). Environmental modeling with GIS. New York: Oxford University Press.

    Google Scholar 

  • Goovaerts, P., AvRuskin, G., Meliker, J., Slotnick, M., Jacquez, G., & Nriagu, J. (2005). Geostatistical modeling of the spatial variability of arsenic in groundwater of southeast Michigan. Water Resources Research, 41(7), 1–19.

    Article  CAS  Google Scholar 

  • Grandjean, P., & Bach, E. (1986). Indirect exposures: The significance of bystanders at work and at home. AIHA Journal, 47(12), 819–824.

    Article  CAS  Google Scholar 

  • Gunderson, E. L. (1995). FDA Total Diet Study, July 1986–April 1991, dietary intakes of pesticides, selected elements, and other chemicals. Journal of AOAC International, 78(6), 1353–1363.

    CAS  Google Scholar 

  • Guo, H.-R., & Tseng, M.-P. (2000). Arsenic drinking water and bladder cancer: Comparison between studies based on cabcer registry and death certificates. Environmental Geochemistry and Health, 22, 83–91.

    Article  CAS  Google Scholar 

  • Hadi, A., & Parveen, R. (2004). Arsenicosis in Bangladesh: Prevalence and socio-economic correlates. Public Health, 118(8), 559–564.

    Article  CAS  Google Scholar 

  • Hargrove, W. W., Levine, D. A., Miller, M. R., Coleman, P. R., Pack, D. L., & Durfee, R. C. (2001). GIS and risk assessment: A fruitful combination. In ESRI international user conference. San Diego, USA.

  • Harris, J. S. (1997). Evaluating possible human exposure pathways to populations relative to hazardous materials sites. In ESRI international user conference. San Diego, USA.

  • Harrison, P. T. C., & Holmes, P. (2006). Assessing risks to human health. Issues in Environmental Science and Technology, 22(22), 65–83.

    Article  Google Scholar 

  • Hasnat, M. A. (2005). Assessment of arsenic mitigation options; adverse pregnancy outcomes due to chronic arsenic exposure; and the impact of nutritional status on development of arsenicosis in Bangladesh. PhD. Thesis, The National Centre from Epidemiology and Population Health. The Australian National University, Australia.

  • Hassan, M. M., Atkins, P. J., & Dunn, C. E. (2003). The spatial pattern of risk from arsenic poisoning: A Bangladesh case study. Journal of Environmental Science and Health, A38(1), 1–24.

    Article  CAS  Google Scholar 

  • Hassan, M. M., Atkins, P. J., & Dunn, C. E. (2005). Social implications of arsenic poisoning in Bangladesh. Social Science and Medicine, 61, 2201–2211.

    Article  Google Scholar 

  • Heck, J. E., Gamble, M. V., Chen, Y., Graziano, J. H., Slavkovich, V., Parvez, F., et al. (2007). Consumption of folate-related nutrients and metabolism of arsenic in Bangladesh. American Journal of Clinical Nutrition, 85(5), 1367–1374.

    CAS  Google Scholar 

  • Hellweger, F. L., Wilson, H. L., Naranjo, E. M., & Anid, P. J. (2002). Adding human health risk analysis tools to geographic information systems. Transactions in GIS, 6(4), 471–484.

    Article  Google Scholar 

  • Hiscock, K. M., Lovett, A. A., & Parfitt, J. P. (1995). Groundwater vulnerability assessment: two case studies using GIS methodology. The Quarterly Journal of Engineering Geology, 28, 179–194.

    Google Scholar 

  • Hsu, L. T., & Cheng, C. C. (1999). Integrating landscape models in forest landscape analyses using GIS: An example in Taiwan. GIS Development, 1–5.

  • Islam, L. N., Nabi, A., Rahman, M. M., Khan, M. A., & Kazi, A. I. (2004a). Association of clinical complications with nutritional status and the prevalence of leukopenia among arsenic patients in Bangladesh. International Journal of Environmental Research and Public Health, 1(2), 74–82.

    Article  Google Scholar 

  • Islam, M. N., & Nehaluddin, M. (2002). Hydrogeology and arsenic contamination in Bangladesh. In M. A. Feroze & M. A. Chowdhury (Eds.), Arsenic mitigation in Bangladesh. Government of the People’s Republic of Bangladesh: Local Government Division, Ministry of Rural Development & Cooperatives.

    Google Scholar 

  • Islam, M. R., Paul, D. K., & Shaha, R. K. (2004b). Nutritional importance of some leafy vegetables available in Bangladesh. Pakistan Journal of Biological Sciences, 7(8), 1380–1384.

    Article  Google Scholar 

  • Kelly, C., & Lunn, R. J. (1999). Development of a contaminated land assessment system based on hazard to surface water bodies. Water Resources Research, 33(6), 1377–1386.

    CAS  Google Scholar 

  • Korre, A., Durucan, S., & Koutroumani, A. (2002). Quantitative-spatial assessment of the risks associated with high pb loads in soils around Lavrio, Greece. Applied Geochemistry, 17, 1029–1045.

    Article  CAS  Google Scholar 

  • Korte, N. E., & Fernando, Q. (1991). A review of Arsenic (III) in groundwater. CRC Critical Reviews in Environmental Control CCECAU, 21(1), 1–39.

    CAS  Google Scholar 

  • Laparra, J. M., Velez, D., Barbera, R., Farre, R., & Montoro, R. (2005). Bioavailability of inorganic Arsenic in cooked rice: Practical aspects for human risk assessment. Journal of Agricultural and Food Chemistry, 53(22), 8829–8833.

    Article  CAS  Google Scholar 

  • Lin, C. W. (2002). Mapping soil lead and remediation needs in contaminated soils. Enviornmental Geochemistry and Health, 24(1), 23–33.

    Article  CAS  Google Scholar 

  • Liu, C. W., Liang, C. P., Huang, F. M., & Hsueh, Y. M. (2006). Assessing the human health risks from exposure of inorganic arsenic through oyster (Crassostrea gigas) consumption in Taiwan. Science of the Total Environment, 361(1–3), 57–66.

    Article  CAS  Google Scholar 

  • Llobet, J. M., Falco, G., Casas, C., Teixido, A., & Domingo, J. L. (2003). Concentration of Arsenic, Cadmium, Mercury, and Lead in common foods and estimated daily intake by children, adolescents, adults and seniors of Catalonia, Spain. Journal of Agricultural and Food Chemistry, 51(3), 838–842.

    Article  CAS  Google Scholar 

  • Lovertt, A. A., Parfitt, J. P., & Brainard, J. S. (1997). Using GIS in risk analysis: A case study of hazardous waste transport. Risk Analysis, 17(5), 625–633.

    Article  Google Scholar 

  • Luzi, L. (1995). Application of available modeling to zoning of landslide hazard in Fabriano Area, Central Italy. In JEC-GI ‘95 (pp. 398–403). The Hague.

  • Maidment, R. D. (1996). Environmental modelling within GIS. In M. F. Goodchild, L. T. Steyaert, B. O. Parks, C. Jhonston, D. Maidment, M. Crane, & S. Glendinning (Eds.), GIS and environmental modelling: Progress and research issues (pp. 315–324). New York: Oxford University Press.

    Google Scholar 

  • Mauro, C. D., Hoogerwerf, M., & Sinke, A. J. C. (2000). A GIS Based risk assessment model: Application on sites contaminated by chlorinated solvents and petroleum hydrocarbons (BTEX). In Fourth International Conference on Integrating GIS and Environmental Modelling (GIS/EM4): Problems, Prospects and Research Needs. Alberta, Canada.

  • Mazumder, G. D. N., Haque, R., Ghosh, N., De, B. K., Santra, A., Chakroborti, D., et al. (1998). Arsenic levels in drinking water and the prevalence of skin lesions in West Bengal, India. International Journal of Epidemiology, 27(5), 871–877.

    Article  Google Scholar 

  • McGrath, D., Zangh, C. S., & Carton, O. (2004). Geostatistical analyses and hazard assessment on soil lead in silvermines area, Ireland. Environmental Pollution, 127(2), 239–248.

    Article  CAS  Google Scholar 

  • Meharg, A. A. (2006). Arsenic contamination of Bangladesh rice. In R. Naidu, E. Smith, G. Owens, P. Bhattacharya, & P. Nadebaum (Eds.), Managing Arsenic in the environment: From soil to human health (pp. 273–282). Australia: CSIRO.

    Google Scholar 

  • Meharg, A. A., & Rahman, M. M. (2003). Arsenic contamination of Bangladesh paddy field soils: Implications for rice contribution to arsenic consumption. Environmental Science Technology, 37(2), 229–234.

    Article  CAS  Google Scholar 

  • Ministry of Agriculture, Fisheries and Food (MAFF). (1999). Total Diet Study: Aluminum, arsenic, cadmium, chromium, cropper, lead, mercury, nickel, selenium, tin and zinc. Food surveillance information sheet, No. 191. London: HMSO.

  • Mitra, S. R., Mazumder, D. N. G., Basu, A., Block, G., Haque, R., Samanta, S., et al. (2004). Nutritional factors and susceptibility to arsenic—caused skin lesions in West Bengal, India. Environmental Health Perspectives, 112(10), 1104–1109.

    CAS  Google Scholar 

  • Mohri, T., Hisanaga, A., & Ishinishi, N. (1990). Arsenic intake and excretion by Japanese adults: A 7-day duplicate diet study. Food Chemical Toxicity, 28(7), 521–529.

    Article  CAS  Google Scholar 

  • Morra, P., Bagli, S., & Spadoni, G. (2006). The analysis of human healthy risk with a detailed procedure operating in a GIS environment. Environment International, 32(4), 444–454.

    Article  CAS  Google Scholar 

  • Naidu, R., & Skinner, H. (1999). Arsenic contamination of rural ground water supplies in Bangladesh and India: Implications for soil quality, animal and human health. In C. Barber, B. Humphries, & J. Dixon (Eds.), International conference on diffuse pollution (pp. 407–417). Perth, Australia: CSIRO.

    Google Scholar 

  • Ortigosa, G. R., Leo, G. A., & Gatto, M. (2000). VVF: Integrating modelling and GIS in a software tool for habitat suitability assessment. Environment Modelling Software, 15(1), 1–12.

    Article  Google Scholar 

  • Owens G., Rahman M. M., Heinrich T., & Naidu R. (2004). Bangladesh–Australia Centre for Arsenic Mitigation Program (BACAMP): Program 3: Safe Food, Sect. 1: Arsenic Food Chain Assessment. University of South Australia, Consultancy report for GHD Pty Ltd.

  • Parrish, D. A., Townsend, L., Saunders, J., Carney, G., & Langston, C. (1993). US EPA region 6 comparative risk project: Evaluating ecological risk. In M. F. Goodchild, B. O. Parks, & L. T. Steyaert (Eds.), Environmental modeling with GIS (pp. 318–331). New York: Oxford University Press.

    Google Scholar 

  • Patel, S. K., Shrivas, K., Brandt, R., Jakubowski, N., Corns, W., & Hoffmann, P. (2005). Arsenic contamination in water, soil, sediment and rice of central India. Environmental Geochemistry and Health, 27(2), 131–145.

    Article  CAS  Google Scholar 

  • Pomroy, C., Charbonneau, S. M., McCullough, R. S., & Tam, G. K. (1980). Human retention studies with 74As. Toxicology and Applied Pharmacology, 53(3), 550–556.

    Article  CAS  Google Scholar 

  • Reis, A. P., Sousa, A. J., Da Silva, F., & Fonseca, C. (2005). Application of geostatistical methods to arsenic data from soil samples of the Cova dos Mouros mine (Vila Verde-Portugal). Enviornmental Geochemistry and Health, 27(3), 259–270.

    Article  CAS  Google Scholar 

  • Rejeski, D. (1993). GIS and risk: A three-cultural problem. In M. F. Goodchild, B. O. Parks, & L. T. Steyaert (Eds.), Environmental modeling with GIS (pp. 318–331). New York: Oxford University Press.

    Google Scholar 

  • Roberts, S. M., Weimar, W. R., Vinson, J. R. T., Munson, J. W., & Bergeron, R. J. (2002). Measurement of Arsenic bioavailability in soil using primate model. Toxicological Sciences, 67, 303–310.

    Article  CAS  Google Scholar 

  • Robson, M. (2003). Methodologies for assessing exposures to metals: Human host factor. Ecotoxicology and Environmental Safety, 56(1), 104–109.

    Article  CAS  Google Scholar 

  • Romic, M., & Romic, D. (2003). Heavy metals distribution in agricultural topsoils in urban area. Environmental Geology, 43(7), 795–805.

    CAS  Google Scholar 

  • Roychowdhury, T., Tokunaga, H., & Ando, M. (2003). Survey of arsenic and other heavy metals in food composites and drinking water and estimation of dietary intake by the villagers from an arsenic-affected area of West Bengal, India. The Science of the Total Environment, 308, 15–35.

    Article  CAS  Google Scholar 

  • Roychowdhury, T., Uchino, T., Tokunaga, H., & Ando, M. (2002). Survey of arsenic in food composites from as aresenic-affected area of West Bengal, India. Food Chemical Toxicology, 40, 1611–1621.

    Article  CAS  Google Scholar 

  • Ryan, P. B., Huet, N., & MacIntosh, D. L. (2000). Longitudinal investigation of exposure to arsenic, cadmium, and lead in drinking water. Enviornmental Health Perspectives, 108(8), 731–735.

    Article  CAS  Google Scholar 

  • Sabel, C. E., Gatrell, A. C., Loytonen, M., Maasilta, P., & Jokelainen, M. (2000). Modelling exposure opportunities: estimating relative risk for motor neuron disease in Finland. Social Science Medicine, 50(7–8), 1121–1137.

    Article  CAS  Google Scholar 

  • Sapunar-Postruznik, J., Bazulic, D., & Kubala, H. (1996). Estimation of dietary intake of arsenic in the general population of Republic of Croatia. The Science of the Total Environment, 191, 119–123.

    Article  CAS  Google Scholar 

  • Schoof, R. A., Yost, L. J., Eickhoof, J., Crecelius, E. A., Cragin, D. W., Meacher, D. M., et al. (1999). A market basket survey of inorganic arsenic in food. Food and Chemical Toxicology, 37(8), 839–846.

    Article  CAS  Google Scholar 

  • Sekhar, K. C., Chary, N. S., Kamla, C. T., Rao, J. V., Balaram, V., & Anjaneyulu, Y. (2003). Risk assessment and pathway study of arsenic in industrially contaminated sites of Hyderabad: a case study. Environment International, 29(5), 601–611.

    Article  CAS  Google Scholar 

  • Serre, M. L., Kolovos, A., Christakos, G., & Modis, K. (2003). An application of the holistochastic human exposure methodology to naturally occurring arsenic in Bangladesh Drinking Water. Risk Analysis, 23(3), 515–528.

    Article  CAS  Google Scholar 

  • Smith, E., Naidu, R., & Alston, A. M. (1998). Arsenic in the soil environment: A review. Advances in Agronomy, 64, 149–195.

    Article  CAS  Google Scholar 

  • Stein, A., Staritsky, I., & van Groenigen, J. W. (1995). Interactive GIS for environmental risk assessment. International Journal Geographic Information System, 9(5), 509–525.

    Article  Google Scholar 

  • Sydelko, P. J., Dolph, J. E., Majerus, K. A. & Taxon, T. N. (2000). An advance object-based software framework for complex ecosystem modeling and simulation. In Fourth International Conference on Integrating GIS and Environmental Modeling (GIS/EM4): Problems, Prospects and Research Needs (pp. 1–9). Alberta, Canada.

  • Tchounwou, P. B., Centeno, J. A., & Patlolla, A. K. (2004). Arsenic toxicity, mutagenesis, and carcinogenesis—A health risk assessment and management approach. Molecular and Cellular Biochemistry, 255, 47–55.

    Article  CAS  Google Scholar 

  • Tseng, W. P. (1977). Effects and dose-response relationships of skin cancer and Blackfoot diseases with arsenic. Environmental Health Perspectives, 19, 109–119.

    Article  CAS  Google Scholar 

  • Tsuda, T., Inoue, T., Kojima, M., & Aoki, S. (1995). Market basket and duplicate portion estimation of dietary intakes of cadmium, mercury, arsenic, copper, manganese, and zinc by Japanese adults. Journal of AOAC International, 78(6), 1363–1368.

    CAS  Google Scholar 

  • Uchino, T., Roychowdhury, T., Ando, M., & Tokunaga, H. (2006). Intake of arsenic from water, food composites and excretion through urine, hair from a studied population in West Bengal, India. Food and Chemical Toxicology, 44, 455–461.

    Article  CAS  Google Scholar 

  • Wadge, G., Wislocki, A. P., & Pearson, E. J. (1993). Spatial analysis in GIS for natural hazards assessment. In M. F. Goodchild, B. O. Parks, & L. T. Steyaert (Eds.), Environmental modeling with GIS (pp. 332–338). USA: Oxford University Press.

    Google Scholar 

  • Watanabe, C., Kawata, A., Sudo, N., Sekiyama, M., Inaoka, T., Bae, M., et al. (2004). Water intake in an Asian population living in arsenic contaminated area. Toxicology and Applied Pharmacology, 198, 272–282.

    Article  CAS  Google Scholar 

  • WHO. (2001). Arsenic and arsenic compounds (2nd ed., Environmental health criteria, 224). International Programme on Chemical Safety, 521 S. Geneva: World Health Organization.

  • Williams, P. N., Price, A. H., Raab, A., Hossain, S. A., Feldmann, J., & Meharg, A. A. (2005). Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Enviornmental Science and Technology, 39, 5531–5540.

    Article  CAS  Google Scholar 

  • Wilson, H. L. (1997). Simple environmental exposure models in a GIS Framework. In Term project report. University of Texas, Austin.

  • Yost, L. J., Tao, S.-H., Egan, S. K., Barraj, L. M., Smith, K. M., Tsuji, J. S., et al. (2004). Estimation of dietary intake of inorganic arsenic in U.S. children. Human and Ecological Risk Assessment, 10(3), 473–483.

    Article  CAS  Google Scholar 

  • Yu, W. H., Harvey, C.m., & Harvey, C. F. (2003). Arsenic in groundwater in Bangladesh: A geostatistical and epidemiological framework for evaluating health effects and potential remedies. Water Resources Research, 39(6), 1–17.

    Article  CAS  Google Scholar 

  • Zandbergen, P. A. (1998). Urban watershed ecological risk assessment using GIS: A case study of the Brunette River watershed in British Columbia, Canada. Journal of Hazardous Materials, 61(1), 163–173.

    Article  CAS  Google Scholar 

  • Zhang, J., Chen, X., Parkpian, P., & Sriratana, M. (2001). GIS application on arsenic contamination and its risk assessment in Ronphibun, Nakhorn Si Thammarat, Thailand. Geographical Information Sciences, 7(2), 69–78.

    Google Scholar 

  • Zhang, J., Hodgson, J., & Erkut, E. (2000). Using GIS to assess the risks of hazardous materials transport in networks. European Journal of Operational Research, 121(2), 316–329.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasreen Islam Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, N.I., Owens, G., Bruce, D. et al. Human arsenic exposure and risk assessment at the landscape level: a review. Environ Geochem Health 31 (Suppl 1), 143–166 (2009). https://doi.org/10.1007/s10653-008-9240-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-008-9240-3

Keywords

Navigation