Skip to main content
Log in

Nanoparticles: structure, properties, preparation and behaviour in environmental media

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

There is increasing interest and need to develop a deeper understanding of the nature, fate and behaviour of nanoparticles in the environment. This is driven by the increased use of engineered nanoparticles and the increased pressure to commercialise this growing technology. In this review we discuss the key properties of nanoparticles and their preparation and then discuss how these factors can play a role in determining their fate and behaviour in the natural environment. Key focus of the discussion will relate to the surface chemistry of the nanoparticle, which may interact with a range of molecules naturally present in surface waters and sediments. Understanding these factors is a core goal required for understanding the final fate of nanomaterials and predicting which organisms are likely to be exposed to these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Baalousha M (2008) Aggregation and disaggregation of iron oxide nanoparticles; influence of particles concentration, pH and natural organic matter. J Nanopart Res (Submitted)

  • Baalousha M, Alexa N-A, Cieslak E, Lead JR (2008a) Transport mechanisms of carbon nanotubes in the natural aquatic environment. Environ Sci Technol (Submitted)

  • Baalousha M, Lead JR (2007) Characterization of natural aquatic colloids (<5 nm) by flow-field flow fractionation and atomic force microscopy. Environ Sci Technol 41:1111–1117

    Article  CAS  Google Scholar 

  • Baalousha M, Manciulea A, Cumberland S, Kendall K, Lead JR (2008b) Aggregation and surface properties of iron oxide nanoparticles: influence of pH and natural organic matter. Environ Toxicol Chem (in press)

  • Ballesteros E, Gallego M, Valcarcel M (2000) Analytical potential of fullerene as adsorbent for organic and organometallic compounds from aqueous solutions. J Chromatogr A 869:101–110

    Article  CAS  Google Scholar 

  • Biswas P, Wu CY (2005) Nanoparticles and the environment. J Air Waste Manage Assoc 55:708–746

    CAS  Google Scholar 

  • Brant J, Lecaotnet H, Wiessner MR (2005) Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. J Nanopart Res 7:533–545

    Article  CAS  Google Scholar 

  • Buffle J (2006) The key role of environmental colloids/nanoparticles for the sustainablility of life. Environ Chem 3:155–158

    Article  CAS  Google Scholar 

  • Buffle J, Wilkinson KJ, Stoll S, Filella M, Zhang J (1998) A generalized description of aquatic colloidal interactions: the three-colloidal component approach. Environ Sci Technol 32:2887–2899

    Article  CAS  Google Scholar 

  • Cai YQ, Cai Y, Mou Sf, Lu Yq (2005) Multi-walled carbon nanotubes as a solid-phase extraction adsorbent for the determination of chlorophenols in environmental water samples. J Chromatogr A 1081:245–247

    Article  CAS  Google Scholar 

  • Chen KL, Elimelech M (2006) Aggregation and deposition kinetics of fullerene (C60) nanoparticles. Langmuir 22:10994–11001

    Article  CAS  Google Scholar 

  • Chen C, Wang X (2006) Adsorption of Ni(II) from aqueous solution using oxidized multiwall carbon nanotubes. Ind Eng Chem Res 45:9144–9149

    Article  CAS  Google Scholar 

  • Chen KL, Mylon SE, Elimelech M (2006) Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes. Environ Sci Technol 40:1516–1523

    Article  CAS  Google Scholar 

  • Chen KL, Mylon SE, Elimelech M (2007) Enhanced aggregation of alginate-coated iron oxide (Hematite) nanoparticles in the presence of calcium, strontium, and barium cations. Langmuir 23:5920–5928

    Google Scholar 

  • Cheng X, Kan AT, Tomson MB (2004) Naphthalene adsorption and desorption from aqueous C60 fullerene. J Chem Eng Dat 49:675–683

    Article  CAS  Google Scholar 

  • Christian P, O’Brien P (2005) A new route to CdS nanorods. Chem Commun 2817–2819

  • Dhage SR, Pasricha R, Ravi V (2003) Synthesis of ultrafine TiO2 by citrate gel method. Mat Res Bull 38:1623–1628

    Article  CAS  Google Scholar 

  • Ding Q, Liang P, Song F, Xiang A (2006) Separation and preconcentration of silver ion using multiwalled carbon nanotubes as solid phase extraction sorbent. Sep Sci Technol 41:2723–2732

    Article  CAS  Google Scholar 

  • Dios M, Barroso F, Tojo C, Blanco MC, Lopez-Quintela MA (2005) Effects of the reaction rate on the size control of nanoparticles synthesized in microemulsions. Coll Surf: Physiochem Eng Aspects 270–271:83–87

    Google Scholar 

  • Dupuis AC (2005) The catalyst in the CCVD of carbon nanotubes—a review. Prog Mat Sci 50:929–961

    Article  CAS  Google Scholar 

  • Esquivel EV, Murr LE (2004) A TEM analysis of nanoparticulates in a Polar ice core. Mater Charact 52(1):15–25

    Article  CAS  Google Scholar 

  • Giammar DE, Maus CJ, Xie L (2007) Effects of particle size and crystalline phase on lead adsorption to titanium dioxide nanoparticles. Environ Eng Sci 24:85–95

    Article  CAS  Google Scholar 

  • Giasuddin ABM, Kanel SR, Choi H (2007) Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal. Environ Sci Technol 41:2022–2027

    Article  CAS  Google Scholar 

  • Gotovac S, Hattori Y, Noguchi D, Miyamoto J, Kanamaru M, Utsumi S, Kanoh H, Kaneko K (2006) Phenanthrene adsorption from solution on single wall carbon nanotubes. J Phys Chem B 110:16219–16224

    Article  CAS  Google Scholar 

  • Hague DC, Mayo MJ (1994) Controlling crystallinity during processing of annocrystalline titania. J Am Ceram Soc 77:1957–1960

    Article  Google Scholar 

  • Helland A, Wick P, Koehler A, Schmid K, Som C (2007) Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ Health Perspec 115:1125–1131

    CAS  Google Scholar 

  • Henglein A, Giersig M (1999) Formation of colloidal silver nanoparticles: capping action of citrate. J Phys Chem B 103:9533–9539

    Article  CAS  Google Scholar 

  • Huang PM, Wang MK, Chiu CY (2005) Soil mineral-organic matter-microbe interactions: impacts on biogeochemical processes and biodiversity in soils. Pedobiologia 49:609–635

    Article  CAS  Google Scholar 

  • Hunter KA, Liss PS (1982) Organic matter and surface charge of suspended particles in estuarine waters. Limnol Oceanogr 27:322–335

    Article  CAS  Google Scholar 

  • Hyung H, Fortner JD, Hughes JB, Kim JH (2007) Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ Sci Technol 41:179–184

    Article  CAS  Google Scholar 

  • IUPAC (1997) IUPAC compendium of chemical terminology, 2nd edn, compiled by McNaught, AD, Wilkinson A. Blackwell Science, ISBN 0865426848. http://old.iupac.org/publications/compendium/index.html

  • Iwasaki T (1937) Some nites on sand filtration. J Am Wat Works Assoc 29:1591–1602

    Google Scholar 

  • Jarvis P, Jefferson B, Gregory J, Parsons SA (2005) A review of floc strength and breakage. Water Res 39:3121–3137

    Article  CAS  Google Scholar 

  • Jekel MR (1986) The stabilization of dispersed mineral particles by adsorption of humic substances. Water Res 20:1543–1554

    Article  CAS  Google Scholar 

  • Johnson CP, Li X, Logan BE (1996) Settling velocities of fractal aggregates. Environ Sci Technol 30:1911–1918

    Article  CAS  Google Scholar 

  • Kreyling WG, Semmler-Behnke M, Möller W (2006) Health implications of nanoparticles. J Nanopart Res 8:543–562

    Article  CAS  Google Scholar 

  • Kukovitsky EF, L’vov SG, Sainov NA (2000) VLS-growth of carbon nanotubes from the vapour. Chem Phys Lett 317:65–70

    Article  CAS  Google Scholar 

  • Lam CW, James JT, McCluskey R, Arepalli S, Hunter RL (2006) A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol 36:189–217

    Article  CAS  Google Scholar 

  • Lead JR, Hamilton-Taylor J, Davison W, Harper M (1999) Trace metal sorption by natural particles and coarse colloids. Geochim Cosmochim Acta 63:1661–1670

    Article  CAS  Google Scholar 

  • Lead JR, Muirhead D, Gibson CT (2005) Characterisation of freshwater natural aquatic colloids by atomic force microscopy (AFM). Environ Sci Technol 39:6930–6936

    Article  CAS  Google Scholar 

  • Lead JR, Wilkinson KJ (2006) Aquatic colloids and nanoparticles: current knowledge and future trends. Environ Chem 3:159–171

    Article  CAS  Google Scholar 

  • Li XY, Logan BE (2001) Permeability of fractal aggregates. Water Res 35:3373–3380

    Article  CAS  Google Scholar 

  • Li YH, Wang S, Wei J, Zhang X, Xu C, Luan Z, Wu D, Wei B (2002) Lead adsorption on carbon nanotubes. Chem Phys Lett 357:263–266

    Article  CAS  Google Scholar 

  • Liang P, Liu Y, Guo L, Zeng J, Lu H (2004) Multiwalled carbon nanotubes as solid-phase extraction adsorbent for the preconcentration of trace metal ions and their determination by inductively coupled plasma atomic emission spectrometry. J Anal Atom Spectrom 19:1489–1492

    Article  CAS  Google Scholar 

  • Liang P, Liu Y, Guo L (2005) Determination of trace rare earth elements by inductively coupled plasma atomic emission spectrometry after preconcentration with multiwalled carbon nanotubes. Spectrochim Acta B: Atom Spectroscop 60:125–129

    Article  CAS  Google Scholar 

  • Liang P, Ding Q, Song F (2006) Application of multiwalled carbon nanotubes as solid phase extraction sorbent for preconcentration of trace copper in water samples. J Sep Sci 28:2339–2343

    Article  CAS  Google Scholar 

  • Long RQ, Yang RT (2001) Carbon nanotubes as superior sorbent for dioxin removal. J Am Chem Soc 123:2058–2059

    Article  CAS  Google Scholar 

  • Lu C, Chiu H (2006) Adsorption of zinc(II) from water with purified carbon nanotubes. Chem Eng Sci 61:1138–1145

    Article  CAS  Google Scholar 

  • Lu C, Chung YL, Chang KF (2005) Adsorption of trihalomethanes from water with carbon nanotubes. Water Res 39:1183–1189

    Article  CAS  Google Scholar 

  • Luo X, Killard AJ, Morrin A, Smyth MR (2007) Electrochemical preparation of distinct polyaniline nanostructrues by surface charge control of polystyrene nanoparticle templates. Chem Commun 3207–3209

  • Lyven B, Hassellov M, Turner DR, Haraldsson C, Andersson K (2003) Competition between iron- and carbon-based colloidal carriers for trace metals in a freshwater assessed using flow field-flow fractionation coupled to ICPMS. Geochim Cosmochim Acta 67:3791–3802

    Article  CAS  Google Scholar 

  • Madden AS, Hochella J, Luxton TP (2006) Insights for size-dependent reactivity of hematite nanomineral surfaces through Cu2+ sorption. Geochim Cosmochim Acta 70:4095–4104

    Article  CAS  Google Scholar 

  • Malik MA, O’Brien P, Revaprasadu N (2002) A simple route to the synthesis of core/shell nanoparticles of chalcogenides. Chem Mat 14:2004–2010

    Article  CAS  Google Scholar 

  • Mana L, Scher EC, Alivisatos AP (2000) Synthesis of soluble and processable rod-, arrow-, teardor-, and tetrapod-shaped CdSe nanocrystals. J Am Chem Soc 112:12700

    Article  CAS  Google Scholar 

  • Mattigod SV, Fryxell GE, Skaggs R, Parker KE (2006) Functionalized nanoporous ceramic sorbents for removal of mercury and other contaminants. Nano Science and Technology Institute. Technical Proceedings of the 2006 NSTI Nanotechnology Conference and Trade Show, vol 1, pp 355–357

  • McCarthy JF, McKay LD (2004) Colloid transport in the subsurface: past, present, and future challenges. Vadose Zone J 3:326–337

    CAS  Google Scholar 

  • McCarthy JF, Zachara JM (1989) Subsurface transport of contaminants. Environ Sci Technol 23:496–502

    CAS  Google Scholar 

  • McDowell-Boyer LM, Hunt JR, Sitar N (1986) Particle transport through porous media. Water Resour Res 22:1901–1921

    Article  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  Google Scholar 

  • NIOSH (2004) What is nanotechnology publication 2004-175. http://www.cdc.gov/niosh/docs/2004-175/pdfs/2004-175.pdf

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Poll 150:5–22

    Article  CAS  Google Scholar 

  • O’Melia CR, Tiller CL (1993) Physiochemical aggregation and deposition in aquatic environments. In: Buffle J, van Leuween HP (eds) Environ part, vol 2. Lewis Publishers, London, pp 353–386

    Google Scholar 

  • Obare SO, Meyer GJ (2005) Nanostructured materials for environmental remediation of organic contaminants in water. J Environ Sci Health A 39:2549–2582

    Article  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles supplemental web sections. Environ Health Perspec 113:823–839

    Article  CAS  Google Scholar 

  • Ouali L, Pefferkorn E (1994a) Fragmentation of colloidal aggregates induced by polymer adsorption. J Coll Interf Sci 168:315–322

    Article  CAS  Google Scholar 

  • Paparazzo E (1992) Evidence of Si-OH species on the surface of aged silica. J Vac Sci Technol 10:2892–2896

    Google Scholar 

  • Park SK, Kim KD, Kim HT (2002) Preparation of silica nanoparticles: determination of the optimal synthesis conditions for small and uniform particles. Coll Surf 197:7–17

    Article  CAS  Google Scholar 

  • Pefferkorn E (1995) The role of polyelectrolytes in the stabilisation and destabilisation of colloids. Adv Coll Interf Sci 56:33–104

    Article  CAS  Google Scholar 

  • Peng X, Li Y, Luan Z, Di Z, Wang H, Tian B, Jia Z (2003) Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes. Chem Phys Lett 376:154–158

    Article  CAS  Google Scholar 

  • Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV (2007) Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol 41:284–290

    Article  CAS  Google Scholar 

  • Pons M, Garcia ML, Valls O (1991) Influence of stabilizers on particle size and polydispersity of polybutyl- and polyisobutil-cyanoacrylate nanoparticles. Coll Pol Sci 269:855–858

    Article  CAS  Google Scholar 

  • Qiu S, Dong J, Chen G (1999) Preparation of Cu nanoparticles from water-in-oil microemulsions. J Coll Interf Sci 216:230–234

    Article  CAS  Google Scholar 

  • Rajagopalan R, Tien C (1976) Trajectoty analysis of deep-bed filtration with the sphere-in-cell porous media model. Am Inst Chem Ing 22:523–533

    CAS  Google Scholar 

  • Rempel JY, Trout BT, Bawendi MG, Jensen KF (2006) Density functional theory study of ligand binding on CdSe (0001), (0001), and (1120) single crystal relaxed and reconstructed surfaces: implications for nanocrystalline growth. J Phys Chem B 110:18007–18016

    Article  CAS  Google Scholar 

  • Rizzi FR, Stoll S, Senesi N, Buffle J (2004) A transmission electron microscopy study of the fractal properties and aggregation processes of humic acids. Soil Sci 169:765–775

    Article  CAS  Google Scholar 

  • Ruckenstein E, Prieve DC (1973) Rate of deposition of Brownian particles under action of London and double-layer forces. J Chem Soc Far Trans 2 69(10):1522–1536

    Article  CAS  Google Scholar 

  • Rudalevige T, Francis AH, Zand R (1998) Spectroscopic studies of fullerene aggregates. J Phys Chem A 102:9797–9802

    Article  CAS  Google Scholar 

  • Ryan JN, Gschwend PM (1994) Effect of solution chemistry on clay colloid release from an iron-oxide-coated aquifer sand. Environ Sci Technol 28:1717–1726

    Article  CAS  Google Scholar 

  • Sau TK, Pal A, Pal T (2001) Size regime dependent catalysis by gold nanoparticles for the reduction of eosin. J Phys Chem B 105:9266–9272

    Article  CAS  Google Scholar 

  • SCENIHR (2005) Request for a scientific opinion on the appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious nanotechnologies. SCENIHR/002/05

  • SCENIHR (2007) Opinion on the appropriateness of the risk assessment methodology in accordance with the technical guidance documents for new and existing substances for assessing the risks of nanomaterials. European Commission Heath and Consumer Protection Directorate-General

  • Shaw DJ (1992) Colloid and surface science, 4th edn. Butterworth-Heinemann Ltd

  • Shim SE, Lee H, Soonja C (2004) Synthesis of functionalized monodisperse poly(methyl methacryacrylate) nanoparticles by a RAFT agent carrying carboxyl eng group. Macromol 37:5565–5571

    Article  CAS  Google Scholar 

  • Sokolowska Z, Sokolowski S (1999) Influence of humic acid on surface fractal dimension of kaolin: analysis of mercury porosimetry and water vapour adsorption data. Geoderma 88:233–249

    Article  CAS  Google Scholar 

  • Spielmann LA, Cukor PM (1973) Deposition of non-Brownian particles under colloidal forces. J Coll Interface Sci 43:51–61

    Google Scholar 

  • Stumm W (1992) Chemistry of the solid-water interface. Processes at the mineral-water and particle-water interface in natural waters. Wiley-Interscience, New York

    Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry. Chemical equilibria and rates in natural waters, 3rd edn. Wiley-Interscience, New York

    Google Scholar 

  • Sun CH, Li F, Ying Z, Liu C, Cheng HM (2004) Surface fractal dimension of single-walled carbon nanotubes. Phys Rev B 69:033404-1-033404-4

    Google Scholar 

  • Sun Y, Li X, Zhang W, Wang P (2007) A method for the preparation of stable dispersions of zero-valent iron nanoparticles. Coll Surf A: Physicochem Eng Aspects 31:60–66

    Article  CAS  Google Scholar 

  • The Royal Society & The Royal Academy of Engineering (2004) Nanoscience and nanotechnologies: opportunities and uncertainties. http://www.nanotec.org.uk/finalReport.htm

  • Tien C, Payatakes AC (1979) Advances in deep bed filtration. Am Inst Chem Eng J 25:737–759

    CAS  Google Scholar 

  • Tipping E, Higgins DC (1982) The effect of adsorbed humic substances on the colloid stability of haematite particles. Coll Surf 5:85–92

    Article  CAS  Google Scholar 

  • Tipping E, Ohnstad M (1984) Colloid stability of iron oxide particles from a freshwater lake. Nature 308:266–268

    Article  CAS  Google Scholar 

  • Trindade T, O’Brien P, Pickett N (2001) Nanocrystalline semiconductors: synthesis, properties, and perspectives. Chem Mater 13:3843–3858

    Article  CAS  Google Scholar 

  • Tsantilis S, Kammler HK, Pratsinis SE (2002) Population balance modeling of flame synthesis of titania nanoparticles. Chem Eng Sci 57:2139–2156

    Article  CAS  Google Scholar 

  • Ung D, Soumare Y, Chakroune N, Viau G, Vaulay M, Richard V, Fievet F (2007) Growth of magnetic nanowires and nanodumbbells in liguid polyol. Chem Mater 19:2084–2094

    Article  CAS  Google Scholar 

  • Wang X, Chen C, Hu W, Ding A, Xu D, Zhou X (2005) Sorption of 243Am(III) to multiwall carbon nanotubes. Environ Sci Technol 39:2856–2860

    Article  CAS  Google Scholar 

  • Wang JX, Jiang DQ, Gu ZY, Yan XP (2006) Multiwalled carbon nanotubes coated fibers for solid-phase microextraction of polybrominated diphenyl ethers in water and milk samples before gas chromatography with electron-capture detection. J Chromatogr A 1137:8–14

    Article  CAS  Google Scholar 

  • Wang X, Li Y (2006) Solution based synthetic strategies for 1D nanostructures. Inorg Chem 45:7522–7534

    Article  CAS  Google Scholar 

  • Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40:4336–4345

    Article  CAS  Google Scholar 

  • Wiggington NS, Huas KL, Hochella MF (2007) Aquatic environmental nanoparticles. J Environ Monitor 9:1306–1316

    Article  CAS  Google Scholar 

  • Winter JO, Gomez N, Gatzert S, Schmidt CE, Korgel BA (2005) Variation of cadmium sulfide nanoparticle size and photoluminescence intensity with altered aqueous synthesis conditions. Coll Surf A 254:147–157

    Article  CAS  Google Scholar 

  • Wuister SF, Donega CM, Meijerink A (2004) Infuence of thiol capping on the exciton luminescence and decay kinetics of CdTe and CdSe quantum dots. J Phys Chem B 108:17393–17397

    Article  CAS  Google Scholar 

  • Yang K, Xing B (2007) Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water. Environ Pollut 145:529–537

    Article  CAS  Google Scholar 

  • Yao K-M (1968) Influence of suspended particle size on the transport aspect of water filtration. Diss Univ of North Carolina, Chapel Hill

  • Yao K-M, Habbibian MT, O’Melia CR (1971) Water and wastewater filtration: concepts and applications. Environ Sci Technol 5:1105–1112

    Article  CAS  Google Scholar 

  • Yeung AKC, Pelton R (1996) Micromechanics: a new approach to studying the strength and breakup of flocs. J Colloid Interf Sci 184:579–585

    Article  CAS  Google Scholar 

  • Yonezawa T, Kunitake T (1999) Practical preparation of anionic mercapto ligand-stabilized gold nanoparticles and their immobilization. Coll Surf A 149:193–199

    Article  CAS  Google Scholar 

  • Yoo JS (1998) Selective gas-phase oxidation at oxide nanoparticles on microporous materials. Catal Today 41:409–432

    Google Scholar 

  • Zhang W-S (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332

    Article  CAS  Google Scholar 

  • Zhou Q, Ding Y, Xiao J (2006) Sensitive determination of thiamethoxam, imidacloprid and acetamiprid in environmental water samples with solid-phase extraction packed with multiwalled carbon nanotubes prior to high-performance liquid chromatography. Anal Bioanal Chem 385:1520–1525

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Christian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christian, P., Von der Kammer, F., Baalousha, M. et al. Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology 17, 326–343 (2008). https://doi.org/10.1007/s10646-008-0213-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-008-0213-1

Keywords

Navigation