Skip to main content
Log in

Comparison of cellulose nanocrystals obtained by sulfuric acid hydrolysis and ammonium persulfate, to be used as coating on flexible food-packaging materials

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose nanocrystals (CNCs), extracted from trees, plants, or similar cellulose-containing materials, can be used in combination with other materials to improve their performance or introduce new applications. The main purpose of this study was to compare and understand the potentialities, as coatings for Poly(ethylene terephthalate) films, of CNCs obtained starting from the same cotton linters by two different processes: sulfuric acid hydrolysis and a less common treatment with ammonium persulfate (APS), able to provide also a cellulose oxidation. The results showed that CNCs produced through the APS treatment showed higher charge densities, due to the carboxylic groups formed during the process, higher crystallinity, higher clarity of the solution and, as a consequence, higher transparency of the coating. These characteristics provide a higher oxygen barrier with respect to the CNCs produced by the H2SO4 treatment, together with the availability of active sites for potential surface modification or chemical grafting. Both CNC coatings showed oxygen permeability coefficients that were lower than synthetic resins commonly used in flexible packaging. Furthermore, they did not significantly affect the optical properties of the substrate, while revealing good friction coefficients. Due though to the moisture sensitivity of the coating and its non-sealable nature, similar to EVOH or PVOH oxygen barrier synthetic resins, CNCs developed using APS will need to be laminated with another plastic layer such as a polyolefin. They could then be used to enhance the final properties of packaging solutions as an alternative to conventional food-packaging materials for perishable food products, while reducing their environmental impact with a thin layer of a bio-based polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arola S, Tammelin T, Setala H, Tullila A, Linder MB (2012) Immobilization-stabilization of proteins on nanofibrillated cellulose derivatives and their bioactive film formation. Biomacromolecules 13(3):594–603. doi:10.1021/Bm201676q

    Article  CAS  Google Scholar 

  • Beck-Candanedo S, Roman M, Gray DG (2015) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2):1048–1054. doi:10.1021/bm049300p

    Article  Google Scholar 

  • Beer F, Muller J (1962) Process for the production of caro’s acid salts and solutions thereof. In Google Patents. https://www.google.com/patents/US3036885. Accessed 08 July 2015

  • Belbekhouche S, Bras J, Siqueira G, Chappey C, Lebrun L, Khelifi B, Marais S, Dufresne A (2011) Water sorption behavior and gas barrier properties of cellulose whiskers and microfibrils films. Carbohydr Polym 83:1740–1748

    Article  CAS  Google Scholar 

  • Berne BJ, Pecora R (2000) Dynamic light scattering: with applications to chemistry, biology, and physics. Courier Corporation, New York

    Google Scholar 

  • Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13(2):171–180. doi:10.1007/s10570-006-9061-4

    Article  CAS  Google Scholar 

  • Cheng M, Qin Z, Liu Y, Qin Y, Li T, Chen L, Zhu M (2014) Efficient extraction of carboxylated spherical cellulose nanocrystals with narrow distribution through hydrolysis of lyocell fibers by using ammonium persulfate as an oxidant. J Mater Chem A 2(1):251–258. doi:10.1039/C3TA13653A

    Article  CAS  Google Scholar 

  • Crank J (1979) The mathematics of diffusion. Oxford University Press, Oxford

    Google Scholar 

  • Dong XM, Kimura T, Revol JF, Gray DG (1996) Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12(8):2076–2082. doi:10.1021/la950133b

    Article  CAS  Google Scholar 

  • Dufresne A (2012) Nanocellulose: from nature to high performance tailored materials. Walter de Gruyter, Berlin

    Book  Google Scholar 

  • Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9(1):57–65. doi:10.1021/Bm700769p

    Article  CAS  Google Scholar 

  • Espino E, Cakir M, Domenek S, Román-Gutiérrez AD, Belgacem N, Bras J (2014) Isolation and characterization of cellulose nanocrystal sfrom industrial by-productsof Agave tequilana and barley. Ind Crop Prod 62:552–559

    Article  CAS  Google Scholar 

  • Favier V, Canova GR, Cavaillé JY, Chanzy H, Dufresne A, Gauthier C (1995) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6(5):351–355. doi:10.1002/pat.1995.220060514

    Article  CAS  Google Scholar 

  • Filpponen I (2009) The synthetic strategies for unique properties in cellulose nanocrystal materials. Dissertation, North Carolina State University

  • Filson PB, Dawson-Andoh BE (2009) Sono-chemical preparation of cellulose nanocrystals from lignocellulose derived materials. Bioresour Technol 100(7):2259–2264. doi:10.1016/j.biortech.2008.09.062

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • Gall JF, Church GL, Brown RL (1943) Solubility of ammonium persulfate in water and in solutions of sulfuric acid and ammonium sulfate. J Phys Chem 47(9):645–649. doi:10.1021/j150432a003

    Article  CAS  Google Scholar 

  • Håkansson H, Ahlgren P (2005) Acid hydrolysis of some industrial pulps: effect of hydrolysis conditions and raw material. Cellulose 12(2):177–183. doi:10.1007/s10570-004-1038-6

    Article  Google Scholar 

  • Ifuku S, Tsuji M, Morimoto M, Saimoto H, Yano H (2009) Synthesis of silver nanoparticles templated by TEMPO-mediated oxidized bacterial cellulose nanofibers. Biomacromolecules 10(9):2714–2717. doi:10.1021/bm9006979

    Article  CAS  Google Scholar 

  • Jayakrishnan A, Shah DO (1984) Phase-transfer-catalyzed polymerization of acrylonitrile. J Appl Polym Sci 29(9):2937–2940. doi:10.1002/app.1984.070290921

    Article  CAS  Google Scholar 

  • Kaelble DH (1970) Dispersion-polar surface tension properties of organic solids. J Adhes 2(2):66–81. doi:10.1080/0021846708544582

    Article  CAS  Google Scholar 

  • Kolthoff I, Miller I (1951) The chemistry of persulfate. I. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium. J Am Chem Soc 73(7):3055–3059

    Article  CAS  Google Scholar 

  • Kralchevsky PA, Nagayama K (1994) Capillary forces between colloidal particles. Langmuir 10(1):23–36

    Article  CAS  Google Scholar 

  • Kroeger A, Deimede V, Belack J, Lieberwirth I, Fytas G, Wegner G (2007) Equilibrium length and shape of rodlike polyelectrolyte micelles in dilute aqueous solutions. Macromolecules 40(1):105–115

    Article  CAS  Google Scholar 

  • Lam E, Leung ACW, Liu Y, Majid E, Hrapovic S, Male KB, Luong JHT (2013) Green strategy guided by Raman spectroscopy for the synthesis of ammonium carboxylated nanocrystalline cellulose and the recovery of byproducts. ACS Sustain Chem Eng 1(2):278–283. doi:10.1021/sc3001367

    Article  CAS  Google Scholar 

  • Lasoski SW, Cobbs WH (1959) Moisture permeability of polymersl. I. Role of crystallinity and orientation. Polym Sci 36(130):21–33. doi:10.1002/pol.1959.1203613003

    Article  CAS  Google Scholar 

  • Leung A, Hrapovic S, Lam E, Liu YL, Male KB, Mahmoud KA, Luong JHT (2011) Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7(3):302–305. doi:10.1002/smll.201001715

    Article  CAS  Google Scholar 

  • Leung CW, Luong JHT, Hrapovic S, Lam E, Liu Y, Male KB, Mahmoud K, Rho D (2012) Cellulose nanocrystals from renewable biomass. In Google Patents https://www.google.com/patents/US8900706. Accessed 08 July 2015

  • Li F, Biagioni P, Bollani M, Maccagnan A, Piergiovanni L (2013a) Multi-functional coating of cellulose nanocrystals for flexible packaging applications. Cellulose 20(5):2491–2504. doi:10.1007/s10570-013-0015-3

    Article  CAS  Google Scholar 

  • Li F, Biagioni P, Finazzi M, Tavazzi S, Piergiovanni L (2013b) Tunable green oxygen barrier through layer-by-layer self-assembly of chitosan and cellulose nanocrystals. Carbohydr Polym 92(2):2128–2134. doi:10.1016/j.carbpol.2012.11.091

    Article  CAS  Google Scholar 

  • Li F, Mascheroni E, Piergiovanni L (2015) The potential of nanocellulose in the packaging field: a review. Packag Technol Sci 28(6):475–508. doi:10.1002/pts.2121

    Article  Google Scholar 

  • Mewis J, Wagner NJ (2012) Colloidal suspension rheology. Cambridge University Press, Cambridge

    Google Scholar 

  • Miller KS, Krochta JM (1997) Oxygen and aroma barrier properties of edible films: a review. Trends Food Sci Technol 8(7):228–237. doi:10.1016/S0924-2244(97)01051-0

    Article  CAS  Google Scholar 

  • Nickerson RF, Habrle JA (1947) Cellulose intercrystalline structure. Ind Eng Chem 39(11):1507–1512. doi:10.1021/ie50455a024

    Article  CAS  Google Scholar 

  • Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55:241–249

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082. doi:10.1021/ja0257319

    Article  CAS  Google Scholar 

  • Nishiyama Y, Kim UJ, Kim DY, Katsumata KS, May RP, Lagan P (2003a) Periodic disorder along ramie cellulose microfibrils. Biomacromolecules 4:1013–1017

    Article  CAS  Google Scholar 

  • Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003b) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306

    Article  CAS  Google Scholar 

  • Nishiyama Y, Johnson GP, French AD (2012) Diffraction from nonperiodic models of cellulose crystals. Cellulose 19:319–336

    Article  CAS  Google Scholar 

  • Okano T, Kuga S, Wada M, Araki J, Ikuina JP (1999) Nisshin Oil Mills Ltd. Japan Patent JP 98/151052

  • Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13(8):1741–1747. doi:10.1002/app.1969.070130815

    Article  CAS  Google Scholar 

  • Patterson A (1939) The Sherrer formula for X-ray particle size determination. Phys Rev 56:978–982

    Article  CAS  Google Scholar 

  • Pines A, Gibby MG, Waugh JS (1973) Proton-enhanced NMR of dilute spins in solids. J Chem Phys 59(2):569–590. doi:10.1063/1.1680061

    Article  CAS  Google Scholar 

  • Qi A, Chan P, Ho J, Rajapaksa A, Friend J, Yeo L (2011) Template-free synthesis and encapsulation technique for layer-by-layer polymer nanocarrier fabrication. ACS Nano 5(12):9583–9591. doi:10.1021/nn202833n

    Article  CAS  Google Scholar 

  • Roisnel T, Rodríguez-Carvajal J (2001) WinPLOTR: a Windows tool for powder diffraction pattern analysis. Mater Sci Forum 378(3):118–123

    Article  Google Scholar 

  • Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5(5):1671–1677. doi:10.1021/bm034519+

    Article  CAS  Google Scholar 

  • Salame M (1989) The use of barrier polymers in food and beverage packaging. In: Finlayson KM (ed) Plastic film technology, vol 1. Technologic Publishing Co. Inc., Lancaster

    Google Scholar 

  • Springer EL, Minor JL (1991) Delignification of lignocellulosic materials with monoperoxysulfuric acid. United States Patent 5,004,523 issued April 2, 1991

  • Turrentine JW (1906) Action of ammonium persulphate on metals. J Phys Chem 11(8):623–631. doi:10.1021/j150089a004

    Article  Google Scholar 

  • Van Oss CJ (2003) Long-range and short-range mechanisms of hydrophobic attraction and hydrophilic repulsion in specific and aspecific interactions. J Mol Recognit 16(4):177–190

    Article  Google Scholar 

  • Yang H, Alam MN, van de Ven TGM (2013) Highly charged nanocrystalline cellulose and dicarboxylated cellulose from periodate and chlorite oxidized cellulose fibers. Cellulose 20(4):1865–1875

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Professor Francesco Demartin and Dr. Stefano Checchia, Department of Chemistry, University of Milan and Dr. Giorgio Capretti of INNOVHUB-SSI, Milan, for technical support in analysis and scientific support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Piergiovanni.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 91 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mascheroni, E., Rampazzo, R., Ortenzi, M.A. et al. Comparison of cellulose nanocrystals obtained by sulfuric acid hydrolysis and ammonium persulfate, to be used as coating on flexible food-packaging materials. Cellulose 23, 779–793 (2016). https://doi.org/10.1007/s10570-015-0853-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0853-2

Keywords

Navigation