Skip to main content
Log in

Suitability of wheat straw semichemical pulp for the fabrication of lignocellulosic nanofibres and their application to papermaking slurries

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The present work studies the feasibility of wheat soda pulp as a raw material for the fabrication of cellulose nanofibres and their application as an additive in papermaking. Wheat straws were cooked under alkaline conditions and the resulting pulp was used as a raw material for the production of lignocellulosic nanofibres (LCNF). Nanofibres were fabricated by intense mechanical beating followed by high-pressure homogenization. The produced LCNF were characterized and applied to papermaking slurry based also on wheat straw soda pulp. Paper sheets made thereof were analysed for their physical and mechanical properties. The results indicated that paper strength was improved after addition of LCNF, whereas density increased and porosity was reduced. These improvements in properties (except the Tear Index) are significant because they were achieved using LCNF with lower fibrillation degree compared to previous works where chemically pre-treated LCNF were used as reinforcement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Afra E, Yousefi H, Hadilam MH, Nishino T (2013) Comparative effect of mechanical beating and nanofibrillation on paper properties made from bagasse and softwood pulps. Carbohydr Polym 97:725–730

    Article  CAS  Google Scholar 

  • Alcalá M, González I, Boufi S, Vilaseca F, Mutjé P (2013) All-cellulose composites from unbleached hardwood kraft pulp reinforced with nanofibrillated cellulose. Cellulose 20:2909–2921

    Article  Google Scholar 

  • Alila S, Besbes I, Rei Vilar M, Mutjé P, Boufi S (2013) Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): a comparative study. Ind Crop Prod 41:250–259

    Article  CAS  Google Scholar 

  • Ankerfors M (2015) Microfibrillated cellulose: energy-efficient preparation techniques and applications in paper. Doctoral Thesis, KTH Royal Institute of Technology

  • Besbes I, Rei Vilar M, Boufi S (2011) Nanofibrillated cellulose from Alfa, Eucalyptus and Pine fibres: preparation, characteristics and reinforcing potential. Carbohydr Polym 86:1198–1206

    Article  CAS  Google Scholar 

  • Brodin FW, Gregersen ØW, Syverud K (2014) Cellulose nanofibrils: challenges and possibilities as paper additive or coating material. Nor Pulp Pap Res J 29(1):156–166

    Article  CAS  Google Scholar 

  • Carrasco F, Mutje P, Pelach MA (1996) Refining of bleached cellulosic pulps: characterization by application of the colloidal titration technique. Wood Sci Technol 30(4):227–236

    Article  CAS  Google Scholar 

  • Carrasco F, Mutjé P, Pelach MA (1998) Control of retention in paper-making by colloid titration and zeta potential techniques. Wood Sci Technol 32(2):145–155

    Article  CAS  Google Scholar 

  • Carvajal M, Mota C, Alcaraz-López C, Iglesias M, Martínez Ballesta MC (2008) Investigación sobre la absorción de CO2 por los cultivos más representativos. Accessed Nov 2014

  • Chaker A, Alila S, Mutjé P, Rei Vilar M, Boufi S (2013) Key role of the hemicelluloses content and the cell morphology on the nanofibrillation effectiveness of cellulose pulp. Cellulose 20:2863–2875

    Article  CAS  Google Scholar 

  • Confederation of European Paper Industries. Key statics 2010. www.cepi.org. Accessed Nov 2014

  • Delgado-Aguilar M, González I, Pèlach MA, De La Fuente E, Negro C, Mutjé P (2014) Improvement of deinked old newspaper/old magazine pulp suspensions by means of nanofibrillated cellulose addition. Cellulose 22(1):789–802

    Article  Google Scholar 

  • Eriksen Ø, Syverud K, Gregersen Ø (2008) The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper. Nor Pulp Pap Res J 23(3):299–304

    Article  CAS  Google Scholar 

  • Ferrer A, Quintana E, Filpponen I, Solala I, Vidal T, Rodríguez A, Laine J, Rojas OJ (2012) Effect of residual lignin and heteropolysaccharides in the nanofibrillar cellulose and nanopaper from wood fibers. Cellulose 19:2179–2193

    Article  CAS  Google Scholar 

  • García Hortal JA (2007) Fibras papeleras. Universidad Politécnica Cataluña, Barcelona

    Google Scholar 

  • González I, Boufi S, Pèlach M, Alcalá M, Vilaseca F, Mutjé P (2012) Nanofibrillated cellulose as paper additive in eucalyptus pulps. BioResources 7(4):5167–5180

    Article  Google Scholar 

  • González I, Alcalá M, Arbat G, Vilaseca F, Mutjé P (2013) Suitability of rapeseed chemithermomechanical pulp as raw material in papermaking. BioResources 8(2):1697–1708

    Article  Google Scholar 

  • González I, Alcala M, Chinga-Carrasco G, Vilaseca F, Boufi S, Mutjé P (2014) From paper to nanopaper: evolution of mechanical and physical properties. Cellulose 21(4):2599–2609

    Article  Google Scholar 

  • González-García S, Moreira MT, Artal G, Ll Maldonado, Feijoo G (2010) Environmental impact assessment of non-wood based pulp production by soda-anthraquinone pulping process. J Clean Prod 18(2):137–145

    Article  Google Scholar 

  • Henriksson M, Henriksson G, Berglund LA, Lindtsröm T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441

    Article  CAS  Google Scholar 

  • Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585

    Article  CAS  Google Scholar 

  • Janardhnan S, Sain MM (2006) Isolation of cellulose microfibrils—an enzymatic approach. BioResources 1(2):176–188

    Google Scholar 

  • Naderi A, Lindström T, Sundström J (2015) Repeated homogenization, a route for decreasing the energy consumption in the manufacturing process of carboxymethylated nanofibrillated cellulose? Cellulose 22(2):1147–1157

    Article  CAS  Google Scholar 

  • Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21:1595–1598

    Article  CAS  Google Scholar 

  • Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941

    Article  Google Scholar 

  • Rodríguez A, Sánchez R, Requejo A, Ferrer A (2010) Feasibility of rice straw as a raw material for the production of soda cellulose pulp. J Clean Prod 18:1084–1091

    Article  Google Scholar 

  • Rouger J, Mutjé P (1984) Correlation between the cellulose fibres beating and the fixation of a soluble cationic polymer. Br Polym J 16(2):83–86

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibres prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491

    Article  CAS  Google Scholar 

  • Solala I, Volperts A, Andersone A, Dizhbite T, Mironova-Ulmane N, Vehniäinen A, Pere J, Vuorinen T (2011) Mechanoradical formation and its effects on birch kraft pulp during the preparation of nanofibrillated cellulose with Masuko refining. Holzforschung 66:477–483

    Google Scholar 

  • Spence K, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097–1111

    Article  CAS  Google Scholar 

  • Taipale T, Österberg M, Nykänen A, Ruokolainen J, Laine J (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17:1005–1020

    Article  CAS  Google Scholar 

  • Turbak A, Snyder F, Sandberg K (1983) Microfibrillated cellulose: a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp 37:815–827

    CAS  Google Scholar 

  • Vargas F, González Z, Sánchez R, Jiménez L, Rodríguez A (2012) Straw pulps for packaging. BioResources 7(3):4161–4170

    Google Scholar 

  • www.fao.org. Accessed Nov 2014

  • Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Spain’s DGICyT, MICINN for funding this research within the framework of the Projects CTQ2013-46804-C2-2-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espinosa, E., Tarrés, Q., Delgado-Aguilar, M. et al. Suitability of wheat straw semichemical pulp for the fabrication of lignocellulosic nanofibres and their application to papermaking slurries. Cellulose 23, 837–852 (2016). https://doi.org/10.1007/s10570-015-0807-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0807-8

Keywords

Navigation