Skip to main content
Log in

Analysis of the Effect of Ageing on Rising Edge Characteristics of the Photoplethysmogram using a Modified Windkessel Model

  • Original Paper
  • Published:
Cardiovascular Engineering

Abstract

Ageing is one of the main contributing factors towards increasing arterial stiffness, leading to changes in peripheral pulses propagation. Therefore the characteristics of the photoplethysmogram (PPG) pulse, especially the rising edge and peak position, are greatly affected. In this study, the PPG pulse rising edge and corresponding peak position have been investigated non-invasively in human subjects as a function of age. Fifteen healthy subjects were selected and grouped in five age intervals, from 20 to 59 years, based on their comparable systolic-diastolic blood pressure and PPG amplitude. As expected, the peripheral pulse shows a steep rise and early peak in younger subjects. With age, the slope becomes blunted and in older subjects, the rise is very gradual and the pulse peak appears much later. Qualitative results were further verified by a modified 10-element Windkessel model to quantify the lumped parameter changes with ageing. This verification highlighted some specific changes in vascular parameters with aging. The rising edge could be considered as one parameter in determining the age-dependent vascular state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Allen J, Murray A. Age-related changes in the characteristics of the photoplethysmographic pulse shape at various body sites. Physiol Meas 2003;24:297–307.

    Article  PubMed  Google Scholar 

  • Allen J, Murray A. Development of neural network screening aid for diagnosing lower limb peripheral vascular disease from photoelectric plethysmography pulse waveforms. Physiol Meas 1993;14:13–22.

    Article  PubMed  CAS  Google Scholar 

  • Allen J, Murray A. Modelling the relationship between peripheral blood pressure and blood volume pulses using linear and neural network system identification techniques. Physiol Meas 1999;20:287–301.

    Article  PubMed  CAS  Google Scholar 

  • Allen J, Murray A. Similarity in bilateral photoplethysmographic peripheral pulse wave characteristics at the ears, thumbs and toes. Physiol Meas 2000;21:369–77.

    Article  PubMed  CAS  Google Scholar 

  • Berger DS, Li JK-J. Concurrent compliance reduction and increased peripheral resistance in the manifestation of isolated systolic hypertension. Am J Cardiol 1990;65:67–71.

    Article  PubMed  CAS  Google Scholar 

  • Kelly R, Hayward C, Avolio A, O’Rourke M. Noninvasive determination of ageing changes in the arterial pulse. Circulation 1989;80:1652–9.

    PubMed  CAS  Google Scholar 

  • Avolio AP, Chen SG, Wang RP, Zhang CL, Li MF, O’Rourke MF. Effects of ageing on changing arterial compliance and left ventricular load in a northern Chinese urban community. Circulation 1983;68:50–8.

    PubMed  CAS  Google Scholar 

  • Bhattacharya J, Kaniljal PP. Analysis and characterization of photo-plethysmographic signal. IEEE Trans Biomed Eng 2001;48:1.

    Article  Google Scholar 

  • Ferrari G, Nicoletti A, De Lazzari C, Clemente F, Tosti G, Guaragno M, Mimmo R, Ambrosi D, Gorczynska K. A physical model of the human systemic arterial tree. Int J Artif Organs 2000;23(9):647–57.

    PubMed  CAS  Google Scholar 

  • Fung YC. Biodynamic circulation. New York: Springer-Verlag; 1984.

    Google Scholar 

  • Geertsema AA, Rakhorst A, Mihaylov A, Blanksma PK, Verkerke GJ. Development of a numerical simulation model of the cardiovascular system. J Artif Organs 1997;21(12):1297–301.

    CAS  Google Scholar 

  • Lakatta GE. Age-associated cardiovascular changes in health: impact on cardiovascular disease in older persons. Heart Fail Rev 2002;7:29–49.

    Article  PubMed  Google Scholar 

  • Li JK-J, Cui T, Drzewiecki G. A nonlinear model of the arterial system incorporating a pressure-dependent compliance. IEEE Trans Biomed Eng 1990;BME-37:673–8.

    Article  Google Scholar 

  • Li JK-J. The arterial circulation: physical principles and clinical applications. The Humana Press; 2000.

  • Li JK-J. Dynamics of the vascular system. Rutgers University, USA: World Scientific; 2004.

    Google Scholar 

  • McDonald DA. Blood flow in arteries. 2nd ed. London: Arnold; 1974.

    Google Scholar 

  • McVeigh GE, Bratteli CW, Morgan DJ, Alinder CM, Glasser SP, Finkelstein SM, Cohn JN. Age-related abnormalities in arterial compliance identified by pressure pulse contour analysis: ageing and arterial compliance. Hypertension 1999;33:1392–8.

    PubMed  CAS  Google Scholar 

  • McVeigh GE, Hamilton PK, Morgan DR. Evaluation of mechanical arterial properties: clinical, experimental and therapeutic aspects. Clin Sci 2002;102:51–67.

    Article  PubMed  Google Scholar 

  • Michael JD, Allen J, Murray A. Relation between heart rate and pulse transit time during paced respiration. Physiol Meas 2001;22:425–32.

    Article  Google Scholar 

  • Millasseau SC, Kelly RP, Ritter JM, Chowienczyk PJ. Determination on age-related increases in large artery stiffness by digital pulse contour analysis. Clin Sci 2002;103:371–29.

    PubMed  CAS  Google Scholar 

  • Milnor WR. Hemodynamics. Baltimore/London: Williams & Wilkins; 1992.

    Google Scholar 

  • Nichols WW, O’Rourke MF, Avolio AP, Yaginuma T, Murgo JP, Pepine CJ, Conti CR. Effects of age on ventricular vascular. Am J Cardiol 1990;55:1179–84.

    Article  Google Scholar 

  • Nichols WM, O’Rourke MF. McDonald’s blood flow in arteries: theoretical, experimental and clinical principles. London: Arnold; 1998.

    Google Scholar 

  • Nitzan M, Khanokh B, Slovik Y. The difference in pulse transit time to the toe and finger measured by photoplethysmography. Physiol Meas 2002;23:85–93.

    Article  PubMed  CAS  Google Scholar 

  • O’Rourke M. Arterial stiffness, systolic blood pressure, and logical treatment of arterial hypertension. Hypertension 1990;15(4):339–47.

    PubMed  CAS  Google Scholar 

  • Oliva I, Roztocil K. Fourier analysis of the pulse wave in obliterating arteriosclerosis. VASA 1996;5:95–100.

    Google Scholar 

  • O’Rourke MF, Mancia G. Arterial stiffness. J Hypertens 1999;17:1–4.

    Article  PubMed  CAS  Google Scholar 

  • Burattini R, Gnudi G. Computer identification of models for the arterial tree input impedance: comparison between two new simple models and first experimental results. Med Biol Eng Comput 1982;20(2):134–44.

    Article  PubMed  CAS  Google Scholar 

  • Sherebrin MH, Sherebrin RZ. Frequency-analysis of the peripheral pulse-wave detected in the finger with photoplethysmography. IEEE Trans Biomed Eng 1990;37:313–7.

    Article  PubMed  CAS  Google Scholar 

  • Shirouzu S, Shirouzu E, Tsuda Y, Sugano H. Circulatory parameter extraction from digital plethysmogram I: waveform analysis of digital plethysmogram. In: Proceedings of the 20th annual international conference of the IEEE Engineering in medicine and biology society, 20(6):3087–9; 1998.

  • Snyder MF, Rideout VC. Computer modeling of the human systemic arterial tree. Vol. 1. Great Britain: Pergamon Press;1968 p. 341–53.

    Google Scholar 

  • Takatani S, Ling J. Optical oximetry sensors for whole blood and tissue. IEEE Eng Med Biol 1994;13(3):347–57.

    Article  Google Scholar 

  • Takazawa K, Tanaka N, Fujita M, Matsuoka O, Saiki T, Aikawa M, Tamura S, Ibukiyama C. Assessment of vasoactive agents and vascular ageing by the second derivative of photoplethysmograms waveform. Hypertension 1998;32:365–70.

    PubMed  CAS  Google Scholar 

  • Westerhof N, Bosman F, De Vries CJ, Noordergraaf A. Analog studies of the human systemic tree. Vol. 2. Great Britain: Pergamon Press;1969 p. 121–43.

    Google Scholar 

  • Westerhof N, Elzinga G, Sipkema P. An artificial arterial system for pumping hearts. J Appl Physiol 1971;31(5):776–81.

    PubMed  CAS  Google Scholar 

  • Zahedi E, Ali MAM. Synchronization of independent photoplethysmography channels. International Conference on Biomedical Engineering (BioMed), Kuala Lumpur, Malaysia 2004;295–6.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalaivani Chellappan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zahedi, E., Chellappan, K., Ali, M.A.M. et al. Analysis of the Effect of Ageing on Rising Edge Characteristics of the Photoplethysmogram using a Modified Windkessel Model. Cardiovasc Eng 7, 172–181 (2007). https://doi.org/10.1007/s10558-007-9037-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10558-007-9037-5

Keywords

Navigation