Skip to main content

Advertisement

Log in

Targeting exosomes from preadipocytes inhibits preadipocyte to cancer stem cell signaling in early-stage breast cancer

  • Brief Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The tumor microenvironment plays a critical role in regulating breast tumor progression. Signaling between preadipocytes and breast cancer cells has been found to promote breast tumor formation and metastasis. Exosomes secreted from preadipocytes are important components of the cancer stem cell niche. Mouse preadipocytes (3T3L1) are treated with the natural antitumor compound shikonin (SK) and exosomes derived from mouse preadipocytes are co-cultured with MCF10DCIS cells. We examine how preadipocyte-derived exosomes can regulate early-stage breast cancer via regulating stem cell renewal, cell migration, and tumor formation. We identify a critical miR-140/SOX2/SOX9 axis that regulates differentiation, stemness, and migration in the tumor microenvironment. Next, we find that the natural antitumor compound SK can inhibit preadipocyte signaling inhibiting nearby ductal carcinoma in situ (DCIS) cells. Through co-culture experiments, we find that SK-treated preadipocytes secrete exosomes with high levels of miR-140, which can impact nearby DCIS cells through targeting SOX9 signaling. Finally, we find that preadipocyte-derived exosomes promote tumorigenesis in vivo, providing strong support for the importance of exosomal signaling in the tumor microenvironment. Our data also show that targeting the tumor microenvironment may assist in blocking tumor progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Leonard GD, Swain SM (2004) Ductal carcinoma in situ, complexities and challenges. J Natl Cancer Inst 96:906–920

    Article  PubMed  Google Scholar 

  2. Fowble B, Hanlon A, Fein D, Hoffman J, Sigurdson E, Patchefsky A, Kessler H (1997) Results of conservative surgery and radiation for mammographically detected ductal carcinoma in situ (DCIS). Int J Radiat Oncol 38:949–957

    Article  CAS  Google Scholar 

  3. Cristancho A, Lazar M (2011) Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol 12:722–734

    Article  CAS  PubMed  Google Scholar 

  4. Tebbe C, Chhina J, Dar S, Sarigiannis K, Giri S, Munkarah A, Rattan R (2014) Metformin limits the adipocyte tumor-promoting effect on ovarian cancer. Oncotarget 5:4746

    PubMed Central  PubMed  Google Scholar 

  5. Delort L, Lequeux C, Dubois V, Dubouloz A, Billard A, Mojallal A, Damour O, Vasson M, Caldefie-Chézet F (2013) Reciprocal interactions between breast tumor and its adipose microenvironment based on a 3D adipose equivalent model. PLoS One 8:431–437

    Article  Google Scholar 

  6. Dirat B, Bochet L, Dabek M, Daviaud D, Dauvillier S, Majed B, Wang Y, Meulle A, Salles B, Le Gonidec S, Garrido I, Escourrou G, Valet P, Muller C (2011) Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res 71:2455–2465

    Article  CAS  PubMed  Google Scholar 

  7. Li Q, Xia J, Yao Y, Gong D, Shi H, Zhou Q (2013) Sulforaphane inhibits mammary adipogenesis by targeting adipose mesenchymal stem cells. Breast Cancer Res Treat 141:317–324

    Article  CAS  PubMed  Google Scholar 

  8. Bochet L et al (2013) Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res 73:5657–5667

    Article  CAS  PubMed  Google Scholar 

  9. Barcellos-Hoff M, Lyden D, Wang T (2013) The evolution of the cancer niche during multistage carcinogenesis. Nat Rev Cancer 13:511–518

    Article  CAS  PubMed  Google Scholar 

  10. Simpson RJ, Jensen SS, Lim JW (2008) Proteomic profiling of exosomes: current perspectives. Proteomics 8:4083–4099

    Article  CAS  PubMed  Google Scholar 

  11. Denzer K, Kleijmeer M, Heijnen H, Stoorvogel W, Geuze H (2000) Exosomes from internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci 2113:3365–3374

    Google Scholar 

  12. Van den Boorn J, Dassler J, Coch C, Schlee M, Hartmann G (2013) Exosomes as nucleic acid nanocarriers. Adv Drug Deliv Rev 65:331–335

    Article  PubMed  Google Scholar 

  13. Azmi A (2013) Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis 32:623–642

    Article  CAS  Google Scholar 

  14. Christoph K, Raghu K (2013) Exosomes in tumor microenvironment influence cancer progression and metastasis. J Mol Med 91:431–437

    Article  Google Scholar 

  15. Yang M, Chen J, Su F, Yu B, Su F, Lin L, Liu Y, Huang J, Song E (2011) Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol Cancer 10:117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Lee J, Park S, Jung B, Jeon Y, Lee Y, Kim M, Kim Y, Jang J, Kim C (2013) Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS One 8:e84256. doi:10.1371/journal.pone.0084256

    Article  PubMed Central  PubMed  Google Scholar 

  17. Li Q, Eades G, Yao Y, Zhang Y, Zhou Q (2014) Characterization of a stem-like subpopulation in basal-like ductal carcinoma in situ (DCIS) lesions. J Biol Chem 289:1303–1312

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Yao Y, Zhou Q (2010) A novel antiestrogen agent Shikonin inhibits estrogen-dependent gene transcription in human breast cancer cells. Breast Cancer Res Treat 121:233–240

    Article  CAS  PubMed  Google Scholar 

  19. Yao Y, Brodie A, Davidson N, Kensler T, Zhou Q (2010) Inhibition of estrogen signaling activates the NRF2 pathway in breast cancer. Breast Cancer Res Treat 124:585–591

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Zhang Y, Qian R, Li P (2009) Shikonin, an ingredient of Lithospermum erythrorhizon, down-regulates the expression of steroid sulfatase genes in breast cancer cells. Cancer Lett 284:47–54

    Article  CAS  PubMed  Google Scholar 

  21. Eades G, Yao Y, Yang M, Zhang Y, Chumsri S, Zhou Q (2011) miR-200a regulates SIRT1 expression and epithelial to mesenchymal transition (EMT)-like transformation in mammary epithelial cells. J Biol Chem 286:25992–26002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Spangenburg E, Stephen JPP, Lindsay MW, Richard L (2011) Use of BODIPY (493/503) to visualize intramuscular lipid droplets in skeletal muscle. J Biomed Biotechnol 2011:598358. doi:10.1155/2011/598358

    Article  PubMed Central  PubMed  Google Scholar 

  23. Théry C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. doi:10.1002/0471143030.cb0322s30 Chapter 3:Unit 3.22

    PubMed  Google Scholar 

  24. Iyengar P, Combs T, Shah S, Gouon-Evans V, Pollard J, Albanese C, Flanagan L, Tenniswood M, Guha C, Lisanti M, Pestell R, Scherer P (2003) Adipocyte-secreted factors synergistically promote mammary tumorigenesis through induction of anti-apoptotic transcriptional programs and proto-oncogene stabilization. Oncogene 22:6408–6423

    Article  CAS  PubMed  Google Scholar 

  25. Wang Y, Sul H (2009) Pref-1 regulates mesenchymal cell commitment and differentiation through Sox9. Cell Metab 9:287–302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Zhang Y, Eades G, Yao Y, Li Q, Zhou Q (2012) Estrogen receptor α signaling regulates breast tumor-initiating cells by downregulating miR- 140 which targets the transcription factor SOX2. J Biol Chem 287:41514–41522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Miyaki S, Nakasa T, Otsuki S et al (2009) MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthritis Rheum 60:2723–2730

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Li Q, Yao Y, Eades G, Liu Z, Zhang Y, Zhou Q (2014) Downregulation of miR-140 promotes cancer stem cell formation in basal-like early stage breast cancer. Oncogene 33:2589–2600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Tessitore L, Vizio B, Pesola D, Cecchini F, Mussa A, Argiles J, Benedetto C (2014) Adipocyte expression and circulating levels of leptin increase in both gynaecological and breast cancer patients. Int J Oncol 24:1529–1535

    Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the NCI R01 (Q.Z), the American Cancer Society (Q.Z.) and NCI 5F31CA183522 (G.E.).

Conflict of interest

All authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qun Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gernapudi, R., Yao, Y., Zhang, Y. et al. Targeting exosomes from preadipocytes inhibits preadipocyte to cancer stem cell signaling in early-stage breast cancer. Breast Cancer Res Treat 150, 685–695 (2015). https://doi.org/10.1007/s10549-015-3326-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-015-3326-2

Keywords

Navigation