Skip to main content

Advertisement

Log in

SUMO and estrogen receptors in breast cancer

  • Review
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Small ubiquitin-like modifier (SUMO) is a family of proteins structurally similar to ubiquitin that have been found to be covalently attached to certain lysine residues of specific target proteins. By contrast to ubiquitination, however, SUMO proteins do not promote protein degradation but, instead, modulate important functional properties, depending on the protein substrate. These properties include—albeit not limited to—subcellular localization, protein dimerization, DNA binding and/or transactivation of transcription factors, among them estrogen receptors. Moreover, it has been suggested that SUMO proteins might affect transcriptional co-factor complexes of the estrogen receptor signalling cascade. Tissue and/or state specificity seems to be one of their intriguing features. In this regard, elucidation of their contribution to estrogen receptor-mediated transcriptional activity during breast carcinogenesis will offer new insights into the molecular mechanisms governing sensitivity/resistance in currently applied endocrine treatment and/or chemoprevention, and provide novel routes to breast carcinoma therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AIs:

Aromatase inhibitors

AP-1:

Activator protein-1

AR:

Androgen receptor

C/EBP:

CAAT enhancer-binding protein

EGFR:

Epidermal growth factor receptor

GR:

Glucocorticoid receptor

HECT:

Homologous to E6–AP C-terminus

HSF:

Heat shock transcription factor

Hsp:

Heat shock protein

ILGF-1R:

Insulin like growth factor-1 receptor

JNK:

c-Jun N-terminal kinase

MAPK:

Mitogen-activated protein kinase

PCNA:

Proliferating cell nuclear antigen

PKA:

Protein kinase A

PPARγ :

Peroxisome proliferator-activated receptor γ

PR:

Progesterone receptor

RXRα :

Rexinoid receptor α

SREBPs:

Sterol regulatory element-binding proteins

TF:

Transcription factor

TK:

Tyrosine kinase

References

  1. Yager JD, Davidson NE (2006) Estrogen carcinogenesis in breast cancer. N Engl J Med 354:270–282

    PubMed  CAS  Google Scholar 

  2. Goldhirsch A, Glick JH, Gelber RD et al (2005) Meeting highlights: international expert consensus on the primary therapy of early breast cancer 2005. Ann Oncol 16:1569–1583

    PubMed  CAS  Google Scholar 

  3. Dutertre M, Smith CL (2003) Ligand-independent interactions of p160/steroid receptor coactivators and CREB-binding protein (CBP) with estrogen receptor-alpha: regulation by phosphorylation sites in the A/B region depends on other receptor domains. Mol Endocrinol 17:1296–1314

    PubMed  CAS  Google Scholar 

  4. Heldring N, Nilsson M, Buehrer B et al (2004) Identification of tamoxifen-induced coregulator interaction surfaces within the ligand-binding domain of estrogen receptors. Mol Cell Biol 24:3445–3459

    PubMed  CAS  Google Scholar 

  5. Delaunay F, Pettersson K, Tujague M, Gustafsson JA (2000) Functional differences between the amino-terminal domains of estrogen receptors alpha and beta. Mol Pharmacol 58:584–590

    PubMed  CAS  Google Scholar 

  6. Frasor J, Chang EC, Komm B et al (2006) Gene expression preferentially regulated by tamoxifen in breast cancer cells and correlations with clinical outcome. Cancer Res 66:7334–7340

    PubMed  CAS  Google Scholar 

  7. Ruff M, Gangloff M, Wurtz JM, Moras D (2000) Estrogen receptor transcription and transactivation: structure-function relationship in DNA- and ligand-binding domains of estrogen receptors. Breast Cancer Res 2:353–359

    PubMed  CAS  Google Scholar 

  8. Wang Z, Zhang X, Shen P et al (2006) A variant of estrogen receptor-{alpha}, hER-{alpha}36: transduction of estrogen- and antiestrogen-dependent membrane-initiated mitogenic signaling. Proc Natl Acad Sci USA 103:9063–9068

    PubMed  CAS  Google Scholar 

  9. Leung YK, Mak P, Hassan S, Ho SM (2006) Estrogen receptor (ER)-beta isoforms: a key to understanding ER-beta signaling. Proc Natl Acad Sci USA 103:13162–13167

    PubMed  CAS  Google Scholar 

  10. Karamouzis MV, Papavassiliou AG (2006) The IGF-1 network in lung carcinoma therapeutics. Trends Mol Med 12:595–602

    PubMed  CAS  Google Scholar 

  11. Levin ER (2005) Integration of the extranuclear and nuclear actions of estrogen. Mol Endocrinol 19:1951–1959

    PubMed  CAS  Google Scholar 

  12. Wang RA, Mazumdar A, Vadlamudi RK, Kumar R (2002) P21-activated kinase-1 phosphorylates and transactivates estrogen receptor-alpha and promotes hyperplasia in mammary epithelium. EMBO J 21:5437–5447

    PubMed  CAS  Google Scholar 

  13. Song RX, Santen RJ (2006) Membrane initiated estrogen signaling in breast cancer. Biol Reprod 75:9–16

    PubMed  CAS  Google Scholar 

  14. Gururaj AE, Rayala SK, Vadlamudi RK, Kumar R (2006) Novel mechanisms of resistance to endocrine therapy: genomic and nongenomic considerations. Clin Cancer Res 12:1001s–1007s

    PubMed  CAS  Google Scholar 

  15. Carroll JS, Brown M (2006) Estrogen receptor target gene: an evolving concept. Mol Endocrinol 20:1707–1714

    PubMed  CAS  Google Scholar 

  16. Deroo BJ, Korach KS (2006) Estrogen receptors and human disease. J Clin Invest 116:561–570

    PubMed  CAS  Google Scholar 

  17. Labhart P, Karmakar S, Salicru EM et al (2005) Identification of target genes in breast cancer cells directly regulated by the SRC-3/AIB1 coactivator. Proc Natl Acad Sci USA 102:1339–1344

    PubMed  CAS  Google Scholar 

  18. Rosenfeld MG, Lunyak VV, Glass CK (2006) Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev 20:1405–1428

    PubMed  CAS  Google Scholar 

  19. den Hollander P, Rayala SK, Coverley D, Kumar R (2006) Ciz1, a novel DNA-binding coactivator of the estrogen receptor {alpha}, confers hypersensitivity to estrogen action. Cancer Res 66:11021–11029

    Google Scholar 

  20. Belandia B, Orford RL, Hurst HC, Parker MG (2002) Targeting of SWI/SNF chromatin remodelling complexes to estrogen-responsive genes. EMBO J 21:4094–4103

    PubMed  CAS  Google Scholar 

  21. Mo R, Rao SM, Zhu YJ (2006) Identification of the MLL2 complex as a coactivator for estrogen receptor alpha. J Biol Chem 281:15714–15720

    PubMed  CAS  Google Scholar 

  22. Kim JH, Li H, Stallcup MR (2003) CoCoA, a nuclear receptor coactivator which acts through an N-terminal activation domain of p160 coactivators. Mol Cell 12:1537–1549

    PubMed  CAS  Google Scholar 

  23. Zhou D, Ye JJ, Li Y et al (2006) The molecular basis of the interaction between the proline-rich SH3-binding motif of PNRC and estrogen receptor alpha. Nucleic Acids Res 34:5974–5986

    PubMed  CAS  Google Scholar 

  24. Lee YH, Coonrod SA, Kraus WL et al (2005) Regulation of coactivator complex assembly and function by protein arginine methylation and demethylimination. Proc Natl Acad Sci USA 102:3611–3616

    PubMed  CAS  Google Scholar 

  25. Kobayashi Y, Kitamoto T, Masuhiro Y et al (2000) p300 mediates functional synergism between AF-1 and AF-2 of estrogen receptor alpha and beta by interacting directly with the N-terminal A/B domains. J Biol Chem 275:15645–15651

    PubMed  CAS  Google Scholar 

  26. Webb P, Nguyen P, Shinsako J et al (1998) Estrogen receptor activation function 1 works by binding p160 coactivator proteins. Mol Endocrinol 12:1605–1618

    PubMed  CAS  Google Scholar 

  27. Ding L, Yan J, Zhu J et al (2003) Ligand-independent activation of estrogen receptor alpha by XBP-1. Nucleic Acids Res 31:5266–5274

    PubMed  CAS  Google Scholar 

  28. Faulds MH, Pettersson K, Gustafsson JA, Haldosen LA (2001) Cross-talk between ERs and signal transducer and activator of transcription 5 is E2 dependent and involves two functionally separate mechanisms. Mol Endocrinol 15:1929–1940

    PubMed  CAS  Google Scholar 

  29. Klinge CM, Jernigan SC, Mattingly KA et al (2004) Estrogen response element-dependent regulation of transcriptional activation of estrogen receptors alpha and beta by coactivators and corepressors. J Mol Endocrinol 33:387–410

    PubMed  CAS  Google Scholar 

  30. Dobrzycka KM, Townson SM, Jiang S, Oesterreich S (2003) Estrogen receptor corepressors – a role in human breast cancer? Endocr Relat Cancer 10:517–536

    PubMed  CAS  Google Scholar 

  31. Shang Y, Brown M (2002) Molecular determinants for the tissue specificity of SERMs. Science 295:2465–2468

    PubMed  CAS  Google Scholar 

  32. Norris JD, Fan D, Sherk A, McDonnell DP (2002) A negative coregulator for the human ER. Mol Endocrinol 16:459–468

    PubMed  CAS  Google Scholar 

  33. Frasor J, Danes JM, Komm B et al (2003) Profiling of estrogen up- and down-regulated gene expression in human breast cancer cells: insights into gene networks and pathways underlying estrogenic control of proliferation and cell phenotype. Endocrinology 144:4562–4574

    PubMed  CAS  Google Scholar 

  34. Augereau P, Badia E, Balaguer P et al (2006) Negative regulation of hormone signaling by RIP140. J Steroid Biochem Mol Biol 102:51–59

    PubMed  CAS  Google Scholar 

  35. Fernandes I, Bastien Y, Wai T et al (2003) Ligand-dependent nuclear receptor corepressor LCoR functions by histone deacetylase-dependent and -independent mechanisms. Mol Cell 11:139–150

    PubMed  CAS  Google Scholar 

  36. Shi Y, Sawada J, Sui G et al (2003) Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature 422:735–738

    PubMed  CAS  Google Scholar 

  37. Leader JE, Wang C, Fu M, Pestell RG (2006): Epigenetic regulation of nuclear steroid receptors. Biochem Pharmacol 72:1589–1596

    PubMed  CAS  Google Scholar 

  38. Loven MA, Muster N, Yates JR, Nardulli AM (2003) A novel estrogen receptor alpha-associated protein, template-activating factor Ibeta, inhibits acetylation and transactivation. Mol Endocrinol 17:67–78

    PubMed  CAS  Google Scholar 

  39. Lopez-Garcia J, Periyasamy M, Thomas RS et al (2006) ZNF366 is an estrogen receptor corepressor that acts through CtBP and histone deacetylases. Nucleic Acids Res 34:6126–6136

    PubMed  CAS  Google Scholar 

  40. Lannigan DA (2003) Estrogen receptor phosphorylation. Steroids 68:1–9

    PubMed  CAS  Google Scholar 

  41. Gburcik V, Bot N, Maggiolini M, Picard D (2005) SPBP is a phosphoserine-specific repressor of estrogen receptor alpha. Mol Cell Biol 25:3421–3430

    PubMed  CAS  Google Scholar 

  42. Venkitaraman AR (2002) Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108:171–182

    PubMed  CAS  Google Scholar 

  43. Cui Y, Niu A, Pestell R (2006) Metastasis-associated protein 2 is a repressor of estrogen receptor alpha whose overexpression leads to estrogen-independent growth of human breast cancer cells. Mol Endocrinol 20:2020–2035

    PubMed  CAS  Google Scholar 

  44. Jiang S, Meyer R, Kang K et al (2006) Scaffold attachment factor SAFB1 suppresses estrogen receptor alpha-mediated transcription in part via interaction with nuclear receptor corepressor. Mol Endocrinol 20:311–320

    PubMed  CAS  Google Scholar 

  45. Townson SM, Dobrzycka KM, Lee AV et al (2003) SAFB2, a new scaffold attachment factor homolog and estrogen receptor corepressor. J Biol Chem 278:20059–20068

    PubMed  CAS  Google Scholar 

  46. Wong CW, McNally C, Nickbarg E et al (2002) Estrogen receptor-interacting protein that modulates its nongenomic activity-crosstalk with Src/Erk phosphorylation cascade. Proc Natl Acad Sci USA 99:14783–14788

    PubMed  CAS  Google Scholar 

  47. Karamouzis MV, Gorgoulis VG, Papavassiliou AG (2002) Transcription factors and neoplasia: vistas in novel drug design. Clin Cancer Res 8:949–961

    PubMed  CAS  Google Scholar 

  48. Kinyamu HK, Chen J, Archer TK (2005) Linking the ubiquitin-proteasome pathway to chromatin remodeling/modification by nuclear receptors. J Mol Endocrinol 34:281–297

    PubMed  CAS  Google Scholar 

  49. Welchman RL, Gordon C, Mayer RJ (2005) Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat Rev Mol Cell Biol 6:599–609

    PubMed  CAS  Google Scholar 

  50. Tanaka K, Nishide J, Okazaki K et al (1999) Characterization of a fission yeast SUMO-1 homologue, pmt3p, required for multiple nuclear events, including the control of telomere length and chromosome segregation. Mol Cell Biol 19:8660–8672

    PubMed  CAS  Google Scholar 

  51. Boddy MN, Howe K, Etkin LD et al (1996) PIC 1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia. Oncogene 13:971–982

    PubMed  CAS  Google Scholar 

  52. Okura T, Gong L, Kamitani T et al (1996) Protection against Fas/APO-1- and tumor necrosis factor-mediated cell death by a novel protein, sentrin. J Immunol 157:4277–4281

    PubMed  CAS  Google Scholar 

  53. Ulrich HD (2005) Mutual interactions between the SUMO and ubiquitin systems: a plea of no contest. Trends Cell Biol 15:525–532

    PubMed  CAS  Google Scholar 

  54. Konstantinopoulos PA, Papavassiliou AG (2006) The potential of proteasome inhibition in the treatment of colon cancer. Expert Opin Investig Drugs 15:1067–1075

    PubMed  Google Scholar 

  55. Hay RT (2005) SUMO: a history of modification. Mol Cell 18:1–12

    PubMed  CAS  Google Scholar 

  56. Seeler JS, Dejean A (2003) Nuclear and unclear functions of SUMO. Nat Rev Mol Cell Biol 4:690–699

    PubMed  CAS  Google Scholar 

  57. Gocke CB, Yu H, Kang J (2005) Systematic identification and analysis of mammalian small ubiquitin-like modifier substrates. J Biol Chem 280:5004–5012

    PubMed  CAS  Google Scholar 

  58. Kamitani T, Nguyen HP, Yeh ET (1997) Preferential modification of nuclear proteins by a novel ubiquitin-like molecule. J Biol Chem 272:14001–14004

    PubMed  CAS  Google Scholar 

  59. Johnson ES, Schwienhorst I, Dohmen RJ, Blobel G (1997) The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J 16:5509–5519

    PubMed  CAS  Google Scholar 

  60. Gong L, Kamitani T, Fujise K et al (1997) Preferential interaction of sentrin with a ubiquitin-conjugating enzyme, Ubc9. J Biol Chem 272:28198–28201

    PubMed  CAS  Google Scholar 

  61. Johnson ES, Blobel G (1997) Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J Biol Chem 272:26799–26802

    PubMed  CAS  Google Scholar 

  62. Kamitani T, Nguyen HP, Kito K et al (1998) Covalent modification of PML by the sentrin family of ubiquitin-like proteins. J Biol Chem 273:3117–3120

    PubMed  CAS  Google Scholar 

  63. Tatham MH, Chen Y, Hay RT (2003) Role of two residues proximal to the active site of Ubc9 in substrate recognition by the Ubc9 SUMO-1 thiolester complex. Biochemistry 42:3168–3179

    PubMed  CAS  Google Scholar 

  64. Liu B, Mink S, Wong KA et al (2004) PIAS1 selectively inhibits interferon-inducible genes and is important in innate immunity. Nat Immunol 5:891–898

    PubMed  CAS  Google Scholar 

  65. Pichler A, Gast A, Seeler JS et al (2002) The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108:109–120

    PubMed  CAS  Google Scholar 

  66. Kagey MH, Melhuish TA, Wotton D (2003) The polycomb protein Pc2 is a SUMO E3. Cell 113:127–137

    PubMed  CAS  Google Scholar 

  67. Schwartz DC, Hochstrasser M (2003) A superfamily of protein tags: ubiquitin, SUMO and related modifiers. Trends Biochem Sci 28:321–328

    PubMed  CAS  Google Scholar 

  68. Hochstrasser M (2001) SP-RING for SUMO: new functions bloom for a ubiquitin-like protein. Cell 107:5–8

    PubMed  CAS  Google Scholar 

  69. Schmidt D, Muller S (2003) PIAS/SUMO: new partners in transcriptional regulation. Cell Mol Life Sci 60:2561–2574

    PubMed  CAS  Google Scholar 

  70. Sharrocks AD (2006) PIAS proteins and transcriptional regulation–more than just SUMO E3 ligases? Genes Dev 20:754–758

    PubMed  CAS  Google Scholar 

  71. Reverter D, Lima CD (2005) Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature 435:687–692

    PubMed  CAS  Google Scholar 

  72. Alarcon-Vargas D, Ronai Z (2002) SUMO in cancer–wrestlers wanted. Cancer Biol Ther 1:237–242

    PubMed  CAS  Google Scholar 

  73. Kamitani T, Kito K, Nguyen HP et al (1998) Characterization of a second member of the sentrin family of ubiquitin-like proteins. J Biol Chem 273:11349–11359

    PubMed  CAS  Google Scholar 

  74. Saitoh H, Hinchey J (2000) Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem 275:6252–6258

    PubMed  CAS  Google Scholar 

  75. Tatham MH, Jaffray E, Vaughan OA et al (2001) Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem 276:35368–35374

    PubMed  CAS  Google Scholar 

  76. Owerbach D, McKay EM, Yeh ET et al (2005) A proline-90 residue unique to SUMO-4 prevents maturation and sumoylation. Biochem Biophys Res Commun 337:517–520

    PubMed  CAS  Google Scholar 

  77. Cheng J, Bawa T, Lee P et al. (2006) Role of desumoylation in the development of prostate cancer. Neoplasia 8:667–676

    PubMed  CAS  Google Scholar 

  78. Gong L, Millas S, Maul GG, Yeh ET (2000) Differential regulation of sentrinized proteins by a novel sentrin-specific protease. J Biol Chem 275:3355–3359

    PubMed  CAS  Google Scholar 

  79. Bailey D, O’Hare P (2004) Characterization of the localization and proteolytic activity of the SUMO-specific protease, SENP1. J Biol Chem 279:692–703

    PubMed  CAS  Google Scholar 

  80. Hang J, Dasso M (2002) Association of the human SUMO-1 protease SENP2 with the nuclear pore. J Biol Chem 277:19961–19966

    PubMed  CAS  Google Scholar 

  81. Zhang H, Saitoh H, Matunis MJ (2002) Enzymes of the SUMO modification pathway localize to filaments of the nuclear pore complex. Mol Cell Biol 22:6498–6508

    PubMed  CAS  Google Scholar 

  82. Best JL, Ganiatsas S, Agarwal S et al (2001) SUMO-1 protease-1 regulates gene transcription through PML. Mol Cell 10:843–855

    Google Scholar 

  83. Nishida T, Kaneko F, Kitagawa M, Yasuda H (2001) Characterization of a novel mammalian SUMO-1/Smt3-specific isopeptidase, a homologue of rat axam, which is an axin-binding protein promoting beta-catenin degradation. J Biol Chem 276:39060–39066

    PubMed  CAS  Google Scholar 

  84. Nishida T, Tanaka H, Yasuda H (2000) A novel mammalian Smt3-specific isopeptidase 1 (SMT3IP1) localized in the nucleolus at interphase. Eur J Biochem 267:6423–6427

    PubMed  CAS  Google Scholar 

  85. Faus H, Haendler B (2006) Post-translational modifications of steroid receptors. Biomed Pharmacother 60:520–528

    PubMed  CAS  Google Scholar 

  86. Gong L, Yeh ET (2006) Characterization of a family of nucleolar SUMO-specific proteases with preference for SUMO-2 or SUMO-3. J Biol Chem 281:15869–15877

    PubMed  CAS  Google Scholar 

  87. Johnson ES (2004) Protein modification by SUMO. Annu Rev Biochem 73:355–382

    PubMed  CAS  Google Scholar 

  88. Muller S, Ledl A, Schmidt D (2004) SUMO: a regulator of gene expression and genome integrity. Oncogene 23:1998–2008

    PubMed  Google Scholar 

  89. Christians ES, Zhou Q, Renard J, Benjamin IJ (2003) Heat shock proteins in mammalian development. Semin Cell Dev Biol 14:283–290

    PubMed  CAS  Google Scholar 

  90. Shuai K, Liu B (2005) Regulation of gene-activation pathways by PIAS proteins in the immune system. Nat Rev Immunol 5:593–605

    PubMed  CAS  Google Scholar 

  91. Chauchereau A, Amazit L, Quesne M et al (2003) Sumoylation of the progesterone receptor and of the steroid receptor coactivator SRC-1. J Biol Chem 278:12335–12343

    PubMed  CAS  Google Scholar 

  92. Gill G (2004) SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev 18:2046–2059

    PubMed  CAS  Google Scholar 

  93. Poukka H, Karvonen U, Janne OA, Palvimo JJ (2000) Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1). Proc Natl Acad Sci USA 97:14145–14150

    PubMed  CAS  Google Scholar 

  94. Abdel-Hafiz H, Takimoto GS, Tung L, Horwitz KB (2002) The inhibitory function in human progesterone receptor N termini binds SUMO-1 protein to regulate autoinhibition and transrepression. J Biol Chem 277:33950–33956

    PubMed  CAS  Google Scholar 

  95. Le Drean Y, Mincheneau N, Le Goff P, Michel D (2002) Potentiation of glucocorticoid receptor transcriptional activity by sumoylation. Endocrinology 143:3482–3489

    PubMed  CAS  Google Scholar 

  96. Ohshima T, Koga H, Shimotohno K (2004) Transcriptional activity of peroxisome proliferator-activated receptor gamma is modulated by SUMO-1 modification. J Biol Chem 279:29551–29557

    PubMed  CAS  Google Scholar 

  97. Choi SJ, Chung SS, Rho EJ et al (2006) Negative modulation of RXRalpha transcriptional activity by small ubiquitin-related modifier (SUMO) modification and its reversal by SUMO-specific protease SUSP1. J Biol Chem 281:30669–30677

    PubMed  CAS  Google Scholar 

  98. Desterro JM, Rodriguez MS, Hay RT (1998) SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell 2:233–239

    PubMed  CAS  Google Scholar 

  99. Ji Z, Degerny C, Vintonenko N et al (2007) Regulation of the Ets-1 transcription factor by sumoylation and ubiquitinylation. Oncogene 26:395–406

    PubMed  CAS  Google Scholar 

  100. Iniguez-Lluhi JA, Pearce D (2000) A common motif within the negative regulatory regions of multiple factors inhibits their transcriptional synergy. Mol Cell Biol 20:6040–6050

    PubMed  CAS  Google Scholar 

  101. Kagey MH, Melhuish TA, Powers SE, Wotton D (2005) Multiple activities contribute to Pc2 E3 function. EMBO J 24:108–119

    PubMed  CAS  Google Scholar 

  102. David G, Neptune MA, DePinho RA (2002) SUMO-1 modification of histone deacetylase 1 (HDAC1) modulates its biological activities. J Biol Chem 277:23658–23663

    PubMed  CAS  Google Scholar 

  103. Girdwood D, Bumpass D, Vaughan OA et al (2003) P300 transcriptional repression is mediated by SUMO modification. Mol Cell 11:1043–1054

    PubMed  CAS  Google Scholar 

  104. Kirsh O, Seeler JS, Pichler A et al (2002) The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase. EMBO J 21:2682–2691

    PubMed  CAS  Google Scholar 

  105. Yang SH, Sharrocks AD (2004) SUMO promotes HDAC-mediated transcriptional repression. Mol Cell 13:611–617

    PubMed  CAS  Google Scholar 

  106. Konstantinopoulos PA, Papavassiliou AG (2006) Chromatin-modulating agents as epigenetic anticancer drugs–‘the die is cast’. Drug Discov Today 11:91–93

    PubMed  Google Scholar 

  107. Shiio Y, Eisenman RN (2003) Histone sumoylation is associated with transcriptional repression. Proc Natl Acad Sci USA 100:13225–13230

    PubMed  CAS  Google Scholar 

  108. Ling Y, Sankpal UT, Robertson AK et al (2004) Modification of de novo DNA methyltransferase 3a (Dnmt3a) by SUMO-1 modulates its interaction with histone deacetylases (HDACs) and its capacity to repress transcription. Nucleic Acids Res 32:598–610

    PubMed  CAS  Google Scholar 

  109. Bossis G, Melchior F (2006) SUMO: regulating the regulator. Cell Div 1:13

    PubMed  Google Scholar 

  110. Galy A, Neron B, Planque N et al (2002) Activated MAPK/ERK kinase (MEK-1) induces transdifferentiation of pigmented epithelium into neural retina. Dev Biol 248:251–264

    PubMed  CAS  Google Scholar 

  111. Wood LD, Irvin BJ, Nucifora G et al (2003) Small ubiquitin-like modifier conjugation regulates nuclear export of TEL, a putative tumor suppressor. Proc Natl Acad Sci USA 100:3257–3262

    PubMed  CAS  Google Scholar 

  112. Kwek SS, Derry J, Tyner AL et al (2001) Functional analysis and intracellular localization of p53 modified by SUMO-1. Oncogene 20:2587–2599

    PubMed  CAS  Google Scholar 

  113. Schmidt D, Muller S (2002) Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc Natl Acad Sci USA 99:2872–2877

    PubMed  CAS  Google Scholar 

  114. Cheng J, Perkins ND, Yeh ET (2005) Differential regulation of c-Jun-dependent transcription by SUMO-specific proteases. J Biol Chem 280:14492–14498

    PubMed  CAS  Google Scholar 

  115. Hoeller D, Hecker CM, Dikic I (2006) Ubiquitin and ubiquitin-like proteins in cancer pathogenesis. Nat Rev Cancer 6:776–788

    PubMed  CAS  Google Scholar 

  116. Baek SH (2006) A novel link between SUMO modification and cancer metastasis. Cell Cycle 5:1492–1495

    PubMed  CAS  Google Scholar 

  117. Kim JH, Choi HJ, Kim B et al (2006) Roles of sumoylation of a reptin chromatin-remodelling complex in cancer metastasis. Nat Cell Biol 8:631–639

    PubMed  CAS  Google Scholar 

  118. Singh RR, Kumar R (2005) Steroid hormone receptor signaling in tumorigenesis. J Cell Biochem 96:490–505

    PubMed  CAS  Google Scholar 

  119. Chen D, Pace PE, Coombes RC, Ali S (1999) Phosphorylation of human estrogen receptor alpha by protein kinase A regulates dimerization. Mol Cell Biol 19:1002–1015

    PubMed  CAS  Google Scholar 

  120. Sentis S, Le Romancer M, Bianchin C et al (2005) Sumoylation of the estrogen receptor alpha hinge region regulates its transcriptional activity. Mol Endocrinol 19:2671–2684

    PubMed  CAS  Google Scholar 

  121. Wang L, Banerjee S (2004) Differential PIAS3 expression in human malignancy. Oncol Rep 11:1319–1324

    PubMed  CAS  Google Scholar 

  122. Fuqua SA, Wiltschke C, Zhang QX et al (2000) A hypersensitive estrogen receptor-alpha mutation in premalignant breast lesions. Cancer Res 60:4026–4029

    PubMed  CAS  Google Scholar 

  123. Zhang H, Yi X, Sun X et al (2004) Differential gene regulation by the SRC family of coactivators. Genes Dev 18:1753–1765

    PubMed  CAS  Google Scholar 

  124. Wu RC, Qin J, Yi P et al (2004) Selective phosphorylations of the SRC-3/AIB1 coactivator integrate genomic reponses to multiple cellular signaling pathways. Mol Cell 15:937–949

    PubMed  CAS  Google Scholar 

  125. Torres-Arzayus MI, Font de Mora J, Yuan J et al (2004) High tumor incidence and activation of the PI3K/AKT pathway in transgenic mice define AIB1 as an oncogene. Cancer Cell 6:263–274

    PubMed  CAS  Google Scholar 

  126. Rowan BG, Weigel NL, O’Malley BW (2000) Phosphorylation of steroid receptor coactivator-1. Identification of the phosphorylation sites and phosphorylation through the mitogen-activated protein kinase pathway. J Biol Chem 275:4475–4483

    PubMed  CAS  Google Scholar 

  127. Lopez GN, Turck CW, Schaufele F et al (2001) Growth factors signal to steroid receptors through mitogen-activated protein kinase regulation of p160 coactivator activity. J Biol Chem 276:22177–22182

    PubMed  CAS  Google Scholar 

  128. Font de Mora J, Brown M (2000) AIB1 is a conduit for kinase-mediated growth factor signaling to the estrogen receptor. Mol Cell Biol 20:5041–5047

    Google Scholar 

  129. Kotaja N, Karvonen U, Janne OA, Palvimo JJ (2002) The nuclear receptor interaction domain of GRIP1 is modulated by covalent attachment of SUMO-1. J Biol Chem 277:30283–30288

    PubMed  CAS  Google Scholar 

  130. Wu H, Sun L, Zhang Y et al (2006) Coordinated regulation of AIB1 transcriptional activity by sumoylation and phosphorylation. J Biol Chem 281:21848–21856

    PubMed  CAS  Google Scholar 

  131. Karamouzis MV, Papadas T, Varakis I et al (2002) Induction of the CBP transcriptional co-activator early during laryngeal carcinogenesis. J Cancer Res Clin Oncol 128:135–140

    PubMed  CAS  Google Scholar 

  132. Kuo HY, Chang CC, Jeng JC et al (2005) SUMO modification negatively modulates the transcriptional activity of CREB-binding protein via the recruitment of Daxx. Proc Natl Acad Sci USA 102:16973–16978

    PubMed  CAS  Google Scholar 

  133. Tiefenbach J, Novac N, Ducasse M et al (2006) SUMOylation of the corepressor N-CoR modulates its capacity to repress transcription. Mol Biol Cell 17:1643–1651

    PubMed  CAS  Google Scholar 

  134. Lu Z, Wu H, Mo YY (2006) Regulation of bcl-2 expression by Ubc9. Exp Cell Res 312:1865–1875

    PubMed  CAS  Google Scholar 

  135. Tremblay A, Tremblay GB, Labrie F, Giguere V (1999) Ligand-independent recruitment of SRC-1 to estrogen receptor beta through phosphorylation of activation function AF-1. Mol Cell 3:513–519

    PubMed  CAS  Google Scholar 

  136. Bjornstrom L, Sjoberg M (2004) Estrogen receptor-dependent activation of AP-1 via non-genomic signalling. Nucl Recept 2:3

    PubMed  Google Scholar 

  137. Cheung E, Acevedo ML, Cole PA, Kraus WL (2005) Altered pharmacology and distinct coactivator usage for estrogen receptor-dependent transcription through activating protein-1. Proc Natl Acad Sci USA 102:559–564

    PubMed  CAS  Google Scholar 

  138. Lin X, Sun B, Liang M et al (2003) Opposed regulation of corepressor CtBP by SUMOylation and PDZ binding. Mol Cell 11:1389–1396

    PubMed  CAS  Google Scholar 

  139. Sobko A, Ma H, Firtel RA (2002) Regulated SUMOylation and ubiquitination of DdMEK1 is required for proper chemotaxis. Dev Cell 2:745–756

    PubMed  CAS  Google Scholar 

  140. Normanno N, Di Maio M, De Maio E et al (2005) Mechanisms of endocrine resistance and novel therapeutic strategies in breast cancer. Endocr Relat Cancer 12:721–747

    PubMed  CAS  Google Scholar 

  141. Lewis JS, Jordan VC (2005) Selective estrogen receptor modulators (SERMs): mechanisms of anticarcinogenesis and drug resistance. Mutat Res 591:247–263

    PubMed  CAS  Google Scholar 

  142. Ring A, Dowsett M (2004) Mechanisms of tamoxifen resistance. Endocr Relat Cancer 11:643–658

    PubMed  CAS  Google Scholar 

  143. Osborne CK, Bardou V, Hopp TA et al (2003) Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J Natl Cancer Inst 95:353–361

    Article  PubMed  CAS  Google Scholar 

  144. Anzick SL, Kononen J, Walker RL et al (1997) AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277:965–968

    PubMed  CAS  Google Scholar 

  145. Yang SH, Jaffray E, Hay RT, Sharrocks AD (2003) Dynamic interplay of the SUMO and ERK pathways in regulating Elk-1 transcriptional activity. Mol Cell 12:63–74

    PubMed  CAS  Google Scholar 

  146. Jepsen K, Hermanson O, Onami TM et al (2000) Combinatorial roles of the nuclear receptor corepressor in transcription and development. Cell 102:753–763

    PubMed  CAS  Google Scholar 

  147. Nicholson RI, Hutcheson IR, Knowlden JM et al (2004) Non endocrine pathways and endocrine resistance: observations with antiestrogens and signal transduction inhibitors in combination. Clin Cancer Res 10:346S–354S

    PubMed  CAS  Google Scholar 

  148. Bruggemeier RW (2006) Update on the use of aromatase inhibitors in breast cancer. Expert Opin Pharmacother 7:1919–1930

    Google Scholar 

  149. Dowsett M, Martin LA, Smith I, Johnston S (2005) Mechanisms of resistance to aromatase inhibitors. J Steroid Biochem Mol Biol 95:167–172

    PubMed  CAS  Google Scholar 

  150. Choi JY, Nowell SA, Blanco JG, Ambrosone CB (2006) The role of genetic variability in drug metabolism pathways in breast cancer prognosis. Pharmacogenomics 7:613–624

    PubMed  CAS  Google Scholar 

  151. Martin LA, Farmer I, Johnston SR et al (2003) Enhanced estrogen receptor (ER) alpha, ERBB2, and MAPK signal transduction pathways operate during the adaptation of MCF-7 cells to long term estrogen deprivation. J Biol Chem 278:30458–30468

    PubMed  CAS  Google Scholar 

  152. Brodie A, Jelovac D, Macedo L et al (2005) Therapeutic observations in MCF-7 aromatase xenografts. Clin Cancer Res 11:884s–888s

    PubMed  CAS  Google Scholar 

  153. Teyssier C, Belguise K, Galtier F, Chalbos D (2001) Characterization of the physical interaction between estrogen receptor alpha and JUN proteins. J Biol Chem 276:36361–36369

    PubMed  CAS  Google Scholar 

  154. Bossis G, Malnou CE, Farras R et al (2005) Down-regulation of c-Fos/c-Jun AP-1 dimer activity by sumoylation. Mol Cell Biol 25:6964–6979

    PubMed  CAS  Google Scholar 

  155. Mo YY, Moschos SJ (2005) Targeting Ubc9 for cancer therapy. Expert Opin Ther Targets 9:1203–1216

    PubMed  CAS  Google Scholar 

  156. Jacquiau HR, van Waardenburg RC et al (2005) Defects in SUMO (small ubiquitin-related modifier) conjugation and deconjugation alter cell sensitivity to DNA topoisomerase I-induced DNA damage. J Biol Chem 280:23566–23575

    PubMed  CAS  Google Scholar 

  157. Johnston SR (2005) Combinations of endocrine and biological agents: present status of therapeutic and presurgical investigations. Clin Cancer Res 11:889s–899s

    PubMed  CAS  Google Scholar 

  158. Adams J (2004) The development of proteasome inhibitors as anticancer drugs. Cancer Cell 5:417–421

    PubMed  CAS  Google Scholar 

  159. Boggio R, Colombo R, Hay RT et al (2004) A mechanism for inhibiting the SUMO pathway. Mol Cell 16:549–561

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios G. Papavassiliou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karamouzis, M.V., Konstantinopoulos, P.A., Badra, F.A. et al. SUMO and estrogen receptors in breast cancer. Breast Cancer Res Treat 107, 195–210 (2008). https://doi.org/10.1007/s10549-007-9552-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-007-9552-5

Keywords

Navigation