Skip to main content
Log in

The neurotoxicity of iron, copper and cobalt in Parkinson’s disease through ROS-mediated mechanisms

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is the second most common neurodegenerative disease with gradual loss of dopaminergic neurons. Despite extensive research in the past decades, the etiology of PD remains elusive. Nevertheless, multiple lines of evidence suggest that oxidative stress is one of the common causes in the pathogenesis of PD. It has also been suggested that heavy metal-associated oxidative stress may be implicated in the etiology and pathogenesis of PD. Here we review the roles of redox metals, including iron, copper and cobalt, in PD. Iron is a highly reactive element and deregulation of iron homeostasis is accompanied by concomitant oxidation processes in PD. Copper is a key metal in cell division process, and it has been shown to have an important role in neurodegenerative diseases such as PD. Cobalt induces the generation of reactive oxygen species (ROS) and DNA damage in brain tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AP-1:

Activator protein-1

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

CoCl2 :

Cobalt chloride

DMT1:

Divalent metal transporter 1

GLT-1:

Glutamate transporter-1

GSH:

Glutathione

HIF-1α:

Hypoxia inducible factor 1α

IL-6:

Interleukin-6

IREs:

Iron-responsive elements

MAPK:

Mitogen-activated protein kinase

MPTP:

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

mTOR:

Mechanistic target of rapamycin

NAC:

N-acetyl-l-cysteine

NO:

Nitric oxide

NorSAL:

Norsalsolinol

NOS:

Nitric oxide synthase

6-OHDA:

6-Hydroxydopamine  

PD:

Parkinson’s disease

ROS:

Reactive oxygen species

SAL:

Salsolinol

SNpc:

Substantia nigra pars compacta

SOD:

Superoxide dismutase

THP:

Tetrahydropapaveroline

References

  • Aguirre P, Valdes P, Aracena-Parks P, Tapia V, Nunez MT (2007) Upregulation of gamma-glutamate-cysteine ligase as part of the long-term adaptation process to iron accumulation in neuronal SH-SY5Y cells. Am J Physiol Cell Physiol 292:C2197–C2203

    Article  CAS  PubMed  Google Scholar 

  • Ahmad A, Burns CS, Fink AL, Uversky VN (2012) Peculiarities of copper binding to alpha-synuclein. J Biomol Struct Dyn 29:825–842

    Article  CAS  PubMed  Google Scholar 

  • Ahmed SS, Santosh W (2010) Metallomic profiling and linkage map analysis of early Parkinson’s disease: a new insight to aluminum marker for the possible diagnosis. PLoS One 5:e11252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anandhan A, Rodriguez-Rocha H, Bohovych I, Griggs AM, Zavala-Flores L, Reyes-Reyes EM, Seravalli J, Stanciu LA, Lee J, Rochet JC, Khalimonchuk O, Franco R (2015) Overexpression of alpha-synuclein at non-toxic levels increases dopaminergic cell death induced by copperexposure via modulation of protein degradation pathways. Neurobiol Dis 81:76–92

    Article  CAS  PubMed  Google Scholar 

  • Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Med 10:S18–S25

    Article  PubMed  Google Scholar 

  • Anderson G, Maes M (2014) Neurodegeneration in Parkinson’s disease: interactions of oxidative stress, tryptophan catabolites and depression with mitochondria and sirtuins. Mol Neurobiol 49:771–783

    Article  CAS  PubMed  Google Scholar 

  • Arodin L, Miranda-Vizuete A, Swoboda P, Fernandes AP (2014) Protective effects of the thioredoxin and glutaredoxin systems in dopamine-induced cell death. Free Radic Biol Med 73:328–336

    Article  CAS  PubMed  Google Scholar 

  • Asthana A, Bollapalli M, Tangirala R, Bakthisaran R, Mohan RC (2014) Hsp27 suppresses the Cu(2+)-induced amyloidogenicity, redox activity, and cytotoxicity of alpha-synuclein by metal ion stripping. Free Radic Biol Med 72:176–190

    Article  CAS  PubMed  Google Scholar 

  • Banerjee R, Ragsdale SW (2003) The many faces of vitamin B12: catalysis by cobalamin-dependent enzymes. Annu Rev Biochem 72:209–247

    Article  CAS  PubMed  Google Scholar 

  • Barlow BK, Cory-Slechta DA, Richfield EK, Thiruchelvam M (2007) The gestational environment and Parkinson’s disease: evidence for neurodevelopmental origins of a neurodegenerative disorder. Reprod Toxicol 23:457–470

    Article  CAS  PubMed  Google Scholar 

  • Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3:205–214

    Article  CAS  PubMed  Google Scholar 

  • Bartzokis G, Tishler TA (2000) MRI evaluation of basal ganglia ferritin iron and neurotoxicity in Alzheimer’s and Huntingon’s disease. Cell Mol Biol 46:821–833

    CAS  PubMed  Google Scholar 

  • Bartzokis G, Cummings J, Perlman S, Hance DB, Mintz J (1999) Increased basal ganglia iron levels in Huntington disease. Arch Neurol 56:569–574

    Article  CAS  PubMed  Google Scholar 

  • Benarroch EE (2009) Brain iron homeostasis and neurodegenerative disease. Neurology 72:1436–1440

    Article  PubMed  Google Scholar 

  • Ben-Shachar D, Eshel G, Finberg JP, Youdim MB (1991) The iron chelator desferrioxamine (Desferal) retards 6-hydroxydopamine-induced degeneration of nigrostriatal dopamine neurons. J Neurochem 56:1441–1444

    Article  CAS  PubMed  Google Scholar 

  • Ben-Shachar D, Eshel G, Riederer P, Youdim MB (1992) Role of iron and iron chelation in dopaminergic-induced neurodegeneration: implication for Parkinson’s disease. Ann Neurol 32:S105–S110

    Article  CAS  PubMed  Google Scholar 

  • Berg D, Grote C, Rausch WD, Mäurer M, Wesemann W, Riederer P, Becker G (1999) Iron accumulation in the substantia nigra in rats visualized by ultrasound. Ultrasound Med Biol 25:901–904

    Article  CAS  PubMed  Google Scholar 

  • Bharath S, Hsu M, Kaur D, Rajagopalan S, Andersen JK (2002) Glutathione, iron and Parkinson's disease. Biochem Pharmacol 64:1037–1048

    CAS  PubMed  Google Scholar 

  • Binolfi A, Rasia RM, Bertoncini CW, Ceolin M, Zweckstetter M, Griesinger C, Jovin TM, Fernandez CO (2006) Interaction of alpha-synuclein with divalent metal ions reveals key differences: a link between structure, binding specificity and fibrillation enhancement. J Am Chem Soc 128:9893–9901

    Article  CAS  PubMed  Google Scholar 

  • Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R, Verna JM (2001) Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol 65:135–172

    Article  CAS  PubMed  Google Scholar 

  • Boland DF, Stacy M (2012) The economic and quality of life burden associated with Parkinson’s disease: a focus on symptoms. Am J Manag Care 18:S168–S175

    PubMed  Google Scholar 

  • Brown DR (2013) α-Synuclein as a ferrireductase. Biochem Soc Trans 41:1513–1517

    Article  CAS  PubMed  Google Scholar 

  • Buhmann C, Arlt S, Kontush A, Möller-Bertram T, Sperber S, Oechsner M et al (2004) Plasma and CSF markers of oxidative stress are increased in Parkinson’s disease and influenced by antiparkinsonian medication. Neurobiol Dis 15:160–170

    Article  CAS  PubMed  Google Scholar 

  • Cardaci S, Filomeni G, Rotilio G, Ciriolo MR (2008) Reactive oxygen species mediate p53 activation and apoptosis induced by sodium nitroprusside in SH-SY5Y cells. Mol Pharmacol 74:1234–1245

    Article  CAS  PubMed  Google Scholar 

  • Castellani RJ, Siedlak SL, Perry G, Smith MA (2000) Sequestration of iron by Lewy bodies in Parkinson’s disease. Acta Neuropathol 100:111–114

    Article  CAS  PubMed  Google Scholar 

  • Castellanos M, Puig N, Carbonell T, Castillo J, Martinez J, Rama R, Dávalos A (2002) Iron intake increases infarct volume after permanent middle cerebral artery occlusion in rats. Brain Res 952:1–6

    Article  CAS  PubMed  Google Scholar 

  • Castino R, Fiorentino I, Cagnin M, Giovia A, Isidoro C (2011) Chelation of lysosomal iron protects dopaminergic SH-SY5Y neuroblastoma cells from hydrogen peroxide toxicity by precluding autophagy and Akt dephosphorylation. Toxicol Sci 123:523–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakrabarti S, Munshi S, Banerjee K, Thakurta IG, Sinha M, Bagh MB (2011) Mitochondrial dysfunction during brain aging: role of oxidative stress and modulation by antioxidant supplementation. Aging Dis 2:242–256

    PubMed  PubMed Central  Google Scholar 

  • Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci USA 95:11715–11720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheah JH, Kim SF, Hester LD, Clancy KW, Patterson SE 3rd, Papadopoulos V et al (2006) NMDA receptor-nitric oxide transmission mediates neuronal iron homeostasis via the GTPase Dexras1. Neuron 51:431–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Liu L, Huang S (2008) Cadmium activates the mitogen-activated protein kinase (MAPK) pathway via induction of reactive oxygen species and inhibition of protein phosphatases 2A and 5. Free Radic Biol Med 45:1035–1044

    Article  CAS  PubMed  Google Scholar 

  • Chen JX, Zhao T, Huang DX (2009) Protective effects of edaravone against cobalt chloride-induced apoptosis in PC12 cells. Neurosci Bull 25:67–74

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Xu B, Liu L, Luo Y, Yin J, Zhou H, Chen W, Shen T, Han X, Huang S (2010a) Hydrogen peroxide inhibits mTOR signaling by activation of AMPKalpha leading to apoptosis of neuronal cells. Lab Invest 90:762–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SL, Yang CT, Yang ZL, Guo RX, Meng JL, Cui Y et al (2010b) Hydrogen sulphide protects H9c2 cells against chemical hypoxia-induced injury. Clin Exp Pharmacol Physiol. 37:316–321

    Article  CAS  PubMed  Google Scholar 

  • Chen JK, Zhan YJ, Yang CS, Tzeng SF (2011) Oxidative stress-induced attenuation of thrombospondin-1 expression in primary rat astrocytes. J Cell Biochem 112:59–70

    Article  CAS  PubMed  Google Scholar 

  • Chew KC, Ang ET, Tai YK, Tsang F, Lo SQ, Ong E et al (2011) Enhanced autophagy from chronic toxicity of iron and mutant A53T α-synuclein: implications for neuronal cell death in Parkinson disease. J Biol Chem. 286:33380–33389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong ZZ, Shang YC, Wang S, Maiese K (2012) SIRT1: new avenues of discovery for disorders of oxidative stress. Expert Opin Ther Targets 16:167–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong CM, Shen M, Zhou ZY, Pan P, Hoi PM, Li S et al (2014) Discovery of a benzofuran derivative (MBPTA) as a novel ROCK inhibitor that protects against MPP(+)-induced oxidative stress and cell death in SH-SY5Y cells. Free Radic Biol Med 74:283–293

    Article  CAS  PubMed  Google Scholar 

  • Ciccone S, Maiani E, Bellusci G, Diederich M, Gonfloni S (2013) Parkinson’s disease: a complex interplay of mitochondrial DNA alterations and oxidative stress. Int J Mol Sci 14:2388–2409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crabtree DM, Zhang J (2012) Genetically engineered mouse models of Parkinson’s disease. Brain Res Bull 88:13–32

    Article  CAS  PubMed  Google Scholar 

  • Crichton RR, Dexter DT, Ward RJ (2011) Brain iron metabolism and its perturbation in neurological diseases. J Neural Transm (Vienna) 118:301–314

    Article  CAS  Google Scholar 

  • Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    Article  CAS  PubMed  Google Scholar 

  • Davies P, Moualla D, Brown DR (2011) Alpha-synuclein is a cellular ferrireductase. PLoS One 6:e15814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson TM, Dawson VL (2003) Molecular pathways of neurodegeneration in Parkinson’s disease. Science 302:819–822

    Article  CAS  PubMed  Google Scholar 

  • de Groot MW, Westerink RH (2014) Chemically-induced oxidative stress increases the vulnerability of PC12 cells to rotenone-induced toxicity. Neurotoxicology 43:102–109

    Article  PubMed  CAS  Google Scholar 

  • Dexter DT, Jenner P (2013) Parkinson disease: from pathology to molecular disease mechanisms. Free Radic Biol Med 62:132–144

    Article  CAS  PubMed  Google Scholar 

  • Dexter DT, Carayon A, Javoy-Agid F, Agid Y, Wells FR, Daniel SE, Lees AJ, Jenner P, Marsden CD (1991) Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 114:1953–1975

    Article  PubMed  Google Scholar 

  • Dexter DT, Statton SA, Whitmore C, Freinbichler W, Weinberger P, Tipton KF et al (2011) Clinically available iron chelators induce neuroprotection in the 6-OHDA model of Parkinson’s disease after peripheral administration. J Neural Transm 118:223–231

    Article  CAS  PubMed  Google Scholar 

  • Double KL, Halliday GM, Henderson J, Griffiths FM, Heinemann T, Riederer P, Gerlach M (2003) The dopamine receptor agonist lisuride attenuates iron-mediated dopaminergic neurodegeneration. Exp Neurol 184:530–535

    Article  CAS  PubMed  Google Scholar 

  • Friedlich AL, Tanzi RE, Rogers JT (2007) The 5′-untranslated region of Parkinson’s disease alpha-synuclein messenger RNA contains a predicted iron responsive element. Mol Psychiatry 12:222–223

    Article  CAS  PubMed  Google Scholar 

  • Gaggelli E, Kozlowski H, Valensin D, Valensin G (2006) Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chem Rev 106:1995–2044

    Article  CAS  PubMed  Google Scholar 

  • Gandhi S, Wood NW (2005) Molecular pathogenesis of Parkinson’s disease. Hum Mol Genet 2:2749–2755

    Article  CAS  Google Scholar 

  • Gao HM, Hong JS (2011) Gene-environment interactions: key to unraveling the mystery of Parkinson’s disease. Prog Neurobiol 94:1–19

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerlach M, Double KL, Youdim MB, Riederer P (2000) Strategies for the protection of dopaminergic neurons against neurotoxicity. Neurotox Res 2:99–114

    Article  CAS  PubMed  Google Scholar 

  • Gerlach M, Double KL, Youdim MB, Riederer P (2006) Potential sources of increased iron in the substantia nigra of parkinsonian patients. J Neural Transm 70:133–142

    Article  CAS  Google Scholar 

  • Gomez FJ, Aguirre P, Gonzalez-Billault C, Nunez MT (2011) Iron mediates neuritic tree collapse in mesencephalic neurons treated with 1-methyl-4-phenylpyridinium (MPP+). J Neural Transm 118:421–431

    Article  CAS  PubMed  Google Scholar 

  • Gorell JM, Ordidge RJ, Brown GG, Deniau JC, Buderer NM, Helpern JA (1995) Increased iron-related MRI contrast in the substantia nigra in Parkinson’s disease. Neurology 45:1138–1143

    Article  CAS  PubMed  Google Scholar 

  • Gorell JM, Johnson CC, Rybicki BA, Peterson EL, Kortsha GX, Brown GG, Richardson RJ (1999) Occupational exposure to manganese, copper, lead, iron, mercury and zinc and the risk of Parkinson’s disease. Neurotoxicology 20:239–247

    CAS  PubMed  Google Scholar 

  • Götz ME, Double K, Gerlach M, Youdim MB, Riederer P (2004) The relevance of iron in the pathogenesis of Parkinson’s disease. Ann N Y Acad Sci 1012:193–208

    Article  PubMed  CAS  Google Scholar 

  • Greenough MA, Camakaris J, Bush AI (2013) Metal dyshomeostasis and oxidative stress in Alzheimer’s disease. Neurochem Int 62:540–555

    Article  CAS  PubMed  Google Scholar 

  • Guillemin K, Krasnow MA (1997) The hypoxic response: huffing and HIFing. Cell 89:9–12

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Dawson VL, Dawson TM (2008) What causes cell death in Parkinson’s disease? Ann Neurol 64:S3–S15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    Article  CAS  PubMed  Google Scholar 

  • Han J, Cheng FC, Yang Z, Dryhurst G (1999) Inhibitors of mitochondrial respiration, iron (II), and hydroxyl radical evoke release and extracellular hydrolysis of glutathione in rat striatum and substantia nigra: potential implications to Parkinson’s disease. J Neurochem 73:1683–1695

    Article  CAS  PubMed  Google Scholar 

  • He Q, Song N, Xu H, Wang R, Xie J, Jiang H (2011) Alpha-synuclein aggregation is involved in the toxicity induced by ferric iron to SK-N-SH neuroblastoma cells. J Neural Transm 118:397–406

    Article  CAS  PubMed  Google Scholar 

  • He Q, Song N, Jia F, Xu H, Yu X, Xie J, Jiang H (2013) Role of alpha-synuclein aggregation and the nuclear factor E2-related factor 2/heme oxygenase-1 pathway in iron-induced neurotoxicity. Int J Biochem Cell Biol 45:1019–1030

    Article  CAS  Google Scholar 

  • Healy J, Tipton K (2007) Ceruloplasmin and what it might do. J Neural Transm 114:777–781

    Article  CAS  PubMed  Google Scholar 

  • Hengstler JG, Bolm-Audorff U, Faldum A, Janssen K, Reifenrath M, Götte W, Jung D, Mayer-Popken O, Fuchs J, Gebhard S, Bienfait HG, Schlink K, Dietrich C, Faust D, Epe B, Oesch F (2003) Occupational exposure to heavy metals: DNA damage induction and DNA repair inhibition prove co-exposures to cadmium, cobalt and lead as more dangerous than hitherto expected. Carcinogenesis 24:63–73

    Article  CAS  PubMed  Google Scholar 

  • Herculano-Houzel S (2011) Scaling of brain metabolism with a fixed energy budget per neuron: implications for neuronal activity, plasticity and evolution. PLoS One 6:e17514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hider RC (1995) Potential protection from toxicity by oral iron chelators. Toxicol Lett 82–83:961–967

    Article  PubMed  Google Scholar 

  • Hirsch EC, Brandel JP, Galle P, Javoy-Agid F, Agid Y (1991) Iron and aluminum increase in the substantia nigra of patients with Parkinson’s disease: an X-ray microanalysis. J Neurochem 56:446–451

    Article  CAS  PubMed  Google Scholar 

  • Hozumi I, Hasegawa T, Honda A, Ozawa K, Hayashi Y, Hashimoto K, et al (2011) Patterns of levels of biological metals in CSF differ among neurodegenerative diseases. J Neurol Sci 303:95–99

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Tong YR (2010) A trojan horse for Parkinson’s disease. Sci Signal 3:pe13

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Liu J, Wang JF, Liu QS (2011) The controversial links among calorie restriction, SIRT1, and resveratrol. Free Radic Biol Med 51:250–256

    Article  CAS  PubMed  Google Scholar 

  • Huang HC, Hong L, Chang P, Zhang J, Lu SY, Zheng BW, Jiang ZF (2015) Chitooligosaccharides attenuate Cu2+-induced cellular oxidative damage and cell apoptosis involving Nrf2 activation. Neurotox Res 27:411–420

    Article  CAS  PubMed  Google Scholar 

  • Hung LW, Villemagne VL, Cheng L, Sherratt NA, Ayton S, White AR et al (2012) The hypoxia imaging agent CuII(atsm) is neuroprotective and improves motor and cognitive functions in multiple animal models of Parkinson’s disease. J Exp Med 209:837–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayaram HN, Kusumanchi P, Yalowitz JA (2011) NMNAT expression and its relation to NAD metabolism. Curr Med Chem 18:1962–1972

    Article  CAS  PubMed  Google Scholar 

  • Jellinger K, Kienzl E, Rumpelmair G, Riederer P, Stachelberger H, Ben-Shachar D, Youdim MB (1992) Iron-melanin complex in substantia nigra of parkinsonian brains: an x-ray microanalysis. J Neurochem 59:1168–1171

    Article  CAS  PubMed  Google Scholar 

  • Jenner P (1991) Oxidative stress as a cause of Parkinson’s disease. Acta Neurol Scand Suppl 136:6–15

    Article  CAS  PubMed  Google Scholar 

  • Jenner P (1998) Oxidative mechanisms in nigral cell death in Parkinson’s disease. Mov Disord 1:24–34

    Google Scholar 

  • Jenner P, Olanow CW (2006) The pathogenesis of cell death in Parkinson’s disease. Neurology 66:S24–S36

    Article  PubMed  Google Scholar 

  • Johnson WM, Wilson-Delfosse AL, Mieyal JJ (2012) Dysregulation of glutathione homeostasis in neurodegenerative diseases. Nutrients 4:1399–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jomova K, Vondrakova D, Lawson M, Valko M (2010) Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 345:91–104

    Article  CAS  PubMed  Google Scholar 

  • Jung JY, Roh KH, Jeong YJ, Kim SH, Lee EJ, Kim MS et al (2008) Estradiol protects PC12 cells against CoCl2-induced apoptosis. Brain Res Bull 76:579–585

    Article  CAS  PubMed  Google Scholar 

  • Kaur D, Yantiri F, Rajagopalan S, Kumar J, Mo JQ, Boonplueang R et al (2003) Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson’s disease. Neuron 37:899–909

    Article  CAS  PubMed  Google Scholar 

  • Kaur D, Peng J, Chinta SJ, Rajagopalan S, Di Monte DA, Cherny RA, Andersen JK (2007) Increased murine neonatal iron intake results in Parkinson-like neurodegeneration with age. Neurobiol Aging 28:907–913

    Article  CAS  PubMed  Google Scholar 

  • Keberle H (1964) The Biochemistry of desferrioxamine and its relation to iron metabilism. Ann N Y Acad Sci 119:758–768

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Soh Y, Jang JH, Lee JS, Oh YJ, Surh YJ (2001) Differential cell death induced by salsolinol with and without copper: possible role of reactive oxygen species. Mol Pharmacol 60:440–449

    CAS  PubMed  Google Scholar 

  • Kim J, Gherasim C, Banerjee R (2008) Decyanation of vitamin B12 by a trafficking chaperone. Proc Natl Acad Sci USA 105:14551–14554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi H, Fukuhara K, Tada-Oikawa S, Yada Y, Hiraku Y, Murata M, Oikawa S (2009) The mechanisms of oxidative DNA damage and apoptosis induced by norsalsolinol, an endogenous tetrahydroisoquinoline derivative associated with Parkinson’s disease. J Neurochem 108:397–407

    Article  CAS  PubMed  Google Scholar 

  • Koppenol WH (2001) The Haber-Weiss cycle—70 years later. Redox Rep 6:229–234

    Article  CAS  PubMed  Google Scholar 

  • Kostka M, Hogen T, Danzer KM, Levin J, Habeck M, Wirth A et al (2008) Single particle characterization of iron-induced pore-forming alpha-synuclein oligomers. J Biol Chem 283:10992–11003

    Article  CAS  PubMed  Google Scholar 

  • Kotake-Nara E, Saida K (2006) Endothelin-2/vasoactive intestinal contractor, regulation of expression via reactive oxygen species induced by CoCl2, and biological activities including neurite outgrowth in PC12 cells. Sci World J 6:176–186

    Article  CAS  Google Scholar 

  • Kotake-Nara E, Saida K (2007) Characterization of CoCl2-induced reactive oxygen species (ROS): inductions of neutrite outgrowth and endothelin-2/vasoactive intestinal contractor in PC12 cells by CoCl2 are ROS dependent, but those by MnCl2 are not. Neurosci Lett 422:223–227

    Article  CAS  PubMed  Google Scholar 

  • Kotake-Nara E, Takizawa S, Quan J, Wang H, Saida K (2005) Cobalt chloride induces neurite outgrowth in rat pheochromocytoma PC-12 cells through regulation of endothelin-2/vasoactive intestinal contractor. J Neurosci Res 81:563–571

    Article  CAS  PubMed  Google Scholar 

  • Lan J, Jiang DH (1997) Excessive iron accumulation in the brain: a possible potential risk of neurodegeneration in Parkinson’s disease. J Neural Transm 104:649–660

    Article  CAS  PubMed  Google Scholar 

  • Lan A, Liao X, Mo L, Yang C, Yang Z, Wang X et al (2011) Hydrogen sulfide protects against chemical hypoxia-induced injury by inhibiting ROS-activated ERK1/2 and p38MAPK signaling pathways in PC12 cells. PLoS ONE 6:e25921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan A, Xu W, Zhang H, Hua X, Zheng D, Guo R et al (2013) Inhibition of ROS-activated p38MAPK pathway is involved in the protective effect of H2S against chemical hypoxia-induced inflammation in PC12 cells. Neurochem Res 38:1454–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larner F, Sampson B, Rehkämper M, Weiss DJ, Dainty JR, O’Riordan S, Panetta T, Bain PG (2013) High precision isotope measurements reveal poor control of copper metabolism in parkinsonism. Metallomics 5:125–132

    Article  CAS  PubMed  Google Scholar 

  • Levin J, Högen T, Hillmer AS, Bader B, Schmidt F, Kamp F, Kretzschmar HA, Bötzel K, Giese A (2011) Generation of ferric iron links oxidative stress to α-synuclein oligomer formation. J Parkinsons Dis 1:205–216

    CAS  PubMed  Google Scholar 

  • Li WJ, Jiang H, Song N, Xie JX (2010) Dose- and time-dependent alpha-synuclein aggregation induced by ferric iron in SK-N-SH cells. Neurosci Bull 26:205–210

    Article  PubMed  CAS  Google Scholar 

  • Li W, Jiang H, Song N, Xie J (2011) Oxidative stress partially contributes to iron-induced alpha-synuclein aggregation in SK-N-SH cells. Neurotox Res 19:435–442

    Article  PubMed  CAS  Google Scholar 

  • Lin X, Parisiadou L, Sgobio C, Liu G, Yu J, Sun L, Shim H, Gu XL, Luo J, Long CX, Ding J, Mateo Y, Sullivan PH, Wu LG, Goldstein DS, Lovinger D, Cai H (2012) Conditional expression of Parkinson’s disease-related mutant a-synuclein in the midbrain dopaminergic neurons causes progressive neurodegeneration and degradation of transcription factor nuclear receptor related 1. J Neurosci 32:9248–9264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lison D, De Boeck M, Verougstraete V, Kirsch-Volders M (2001) Update on the genotoxicity and carcinogenicity of cobalt compounds. Occup Environ Med 58:619–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiese K, Chong ZZ, Hou J, Shang YC (2010) Oxidative stress: biomarkers and novel therapeutic pathways. Exp Gerontol 45:217–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiese K, Chong ZZ, Shang YC, Wang S (2011) Translating cell survival and cell longevity into treatment strategies with SIRT1. Rom J Morphol Embryol 52:1173–1185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marlatt M, Lee HG, Perry G, Smith MA, Zhu X (2004) Sources and mechanisms of cytoplasmic oxidative damage in Alzheimer’s disease. Acta Neurobiol Exp (Wars) 64:81–87

    Google Scholar 

  • Martin FL, Williamson SJ, Paleologou KE, Hewitt R, El-Agnaf OM, Allsop D (2003) Fe(II)-induced DNA damage in alpha-synuclein-transfected human dopaminergic BE(2)-M17 neuroblastoma cells: detection by the comet assay. J Neurochem 87:620–630

    Article  CAS  PubMed  Google Scholar 

  • Mastroberardino PG, Hoffman EK, Horowitz MP, Betarbet R, Taylor G, Cheng D et al (2009) A novel transferrin/TfR2-mediated mitochondrial iron transport system is disrupted in Parkinson’s disease. Neurobiol Dis 34:417–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matés JM, Segura JA, Alonso FJ, Márquez J (2009) Natural antioxidants: therapeutic prospects for cancer and neurological diseases. Mini Rev Med Chem 9:1202–1214

    Article  PubMed  Google Scholar 

  • Merker K, Hapke D, Reckzeh K, Schmidt H, Lochs H, Grune T (2005) Copper related toxic effects on cellular protein metabolism in human. astrocytes. BioFactors 24:255–261

    Article  CAS  PubMed  Google Scholar 

  • Migliore L, Coppedè F (2009) Environmental-induced oxidative stress in neurodegenerative disorders and aging. Mutat Res 674:73–84

    Article  CAS  PubMed  Google Scholar 

  • Molina-Holgado F, Gaeta A, Francis PT, Williams RJ, Hider RC (2008) Neuroprotective actions of deferiprone in cultured cortical neurones and SHSY-5Y cells. J Neurochem 105:2466–2476

    Article  CAS  PubMed  Google Scholar 

  • Moore DJ, West AB, Dawson VL, Dawson TM (2005) Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci 28:57–87

    Article  CAS  PubMed  Google Scholar 

  • Muley MM, Thakare VN, Patil RR, Kshirsagar AD, Naik SR (2012) Silymarin improves the behavioural, biochemical and histoarchitecture alterations in focal ischemic rats: a comparative evaluation with piracetam and protocatachuic acid. Pharmacol Biochem Behav 102:286–293

    Article  CAS  PubMed  Google Scholar 

  • Mythri RB, Venkateshappa C, Harish G, Mahadevan A, Muthane UB, Yasha TC et al (2011) Evaluation of markers of oxidative stress, antioxidant function and astrocytic proliferation in the striatum and frontal cortex of Parkinson’s disease brains. Neurochem Res 36:1452–1463

    Article  CAS  PubMed  Google Scholar 

  • Mytilineou C, Kramer BC, Yabut JA (2002) Glutathione depletion and oxidative stress. Parkinsonism Relat Disord 8:385–387

    Article  PubMed  Google Scholar 

  • Napolitano M, Centonze D, Calce A, Picconi B, Spiezia S, Gulino A, Bernardi G, Calabresi P (2002) Experimental parkinsonism modulates multiple genes involved in the transduction of dopaminergic signals in the striatum. Neurobiol Dis 10:387–395

    Article  CAS  PubMed  Google Scholar 

  • Nikam S, Nikam P, Ahaley SK, Sontakke AV (2009) Oxidative stress in Parkinson’s disease. Indian J Clin Biochem 24:98–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ojha S, Javed H, Azimullah S, Abul Khair SB, Haque ME (2016) Glycyrrhizic acid attenuates neuroinflammation and oxidative stress in rotenone model of Parkinson’s disease. Neurotox Res 29:275–287

    Article  CAS  PubMed  Google Scholar 

  • Olanow CW, Brundin P (2013) Parkinson’s disease and alpha synuclein: is Parkinson’s disease a prion-like disorder? Mov Disord 28:31–40

    Article  CAS  PubMed  Google Scholar 

  • Ozcelik D, Uzun H (2009) Copper intoxication; antioxidant defenses and oxidative damage in rat brain. Biol Trace Elem Res 127:45–52

    Article  CAS  PubMed  Google Scholar 

  • Pall HS, Williams AC, Blake DR, Lunec J, Gutteridge JM, Hall M, Taylor A (1987) Raised cerebrospinal-fluid copper concentration in Parkinson’s disease. Lancet 2:238–241

    Article  CAS  PubMed  Google Scholar 

  • Patel BN, Dunn RJ, Jeong SY, Zhu Q, Julien JP, David S (2002) Ceruloplasmin regulates iron levels in the CNS and prevents free radical injury. J Neurosci 22:6578–6586

    CAS  PubMed  Google Scholar 

  • Perfeito R, Lázaro DF, Outeiro TF, Rego AC (2014) Linking alpha-synuclein phosphorylation to reactive oxygen species formation and mitochondrial dysfunction in SH-SY5Y cells. Mol Cell Neurosci 62:51–59

    Article  CAS  PubMed  Google Scholar 

  • Reddy PH, Reddy TP (2011) Mitochondria as a therapeutic target for aging and neurodegenerative diseases. Curr Alzheimer Res 8:393–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MB (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52:515–520

    Article  CAS  PubMed  Google Scholar 

  • Roberts RA, Smith RA, Safe S, Szabo C, Tjalkens RB, Robertson FM (2010) Toxicological and pathophysiological roles of reactive oxygen and nitrogen species. Toxicology 276:85–94

    Article  CAS  PubMed  Google Scholar 

  • Rosas HD, Chen YI, Doros G, Salat DH, Chen NK, Kwong KK, Bush A, Fox J, Hersch SM (2012) Alterations in brain transition metals in Huntington disease: an evolving and intricate story. Arch Neurol 69:887–893

    Article  PubMed  PubMed Central  Google Scholar 

  • Sangchot P, Sharma S, Chetsawang B, Porter J, Govitrapong P, Ebadi M (2002) Deferoxamine attenuates iron-induced oxidative stress and prevents mitochondrial aggregation anda-synuclein translocation in SK-N-SH cells in culture. Dev Neurosci 24:143–153

    Article  CAS  PubMed  Google Scholar 

  • Schapira AH, Olanow CW, Greenamyre JT, Bezard E (2014) Slowing of neurodegeneration in Parkinson’s disease and Huntington’s disease: future therapeutic perspectives. Lancet 384:545–555

    Article  CAS  PubMed  Google Scholar 

  • Schlief ML, West T, Craig AM, Holtzman DM, Gitlin JD (2006) Role of the Menkes copper-transporting ATPase in NMDA receptor-mediated neuronal toxicity. Proc Natl Acad Sci USA 103:14919–14924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serra JA, Domínguez RO, Marschoff ER, Guareschi EM, Famulari AL, Boveris A (2009) Systemic oxidative stress associated with the neurological diseases of aging. Neurochem Res 34:2122–2132

    Article  CAS  PubMed  Google Scholar 

  • Shachar DB, Kahana N, Kampel V, Warshawsky A, Youdim MB (2004) Neuroprotection by a novel brain permeable iron chelator, VK-28, against 6-hydroxydopamine lesion in rats. Neuropharmacology 46:254–263

    Article  PubMed  CAS  Google Scholar 

  • Shoham S, Youdim MB (2002) The effects of iron deficiency and iron and zinc supplementation on rat hippocampus ferritin. J Neural Transm 109:1241–1256

    Article  CAS  PubMed  Google Scholar 

  • Shulman JM, De Jager PL, Feany MB (2011) Parkinson’s disease: genetics and pathogenesis. Annu Rev Pathol 6:193–222

    Article  CAS  PubMed  Google Scholar 

  • Sies H, Cadenas E (1985) Oxidative stress: damage to intact cells and organs. Philos Trans R Soc Lond B 311:617–631

    Article  CAS  Google Scholar 

  • Soh Y, Shin MH, Lee JS, Jang JH, Kim OH, Kang H, Surh YJ (2003) Oxidative DNA damage and glioma cell death induced by tetrahydropapaveroline. Mutat Res 544:129–142

    Article  CAS  PubMed  Google Scholar 

  • Spisni E, Valerii MC, Manerba M, Strillacci A, Polazzi E, Mattia T, Griffoni C, Tomasi V (2009) Effect of copper on extracellular levels of key pro-inflammatory molecules in hypothalamic GN11 and primary neurons. Neurotoxicology 30:605-612

    Article  CAS  PubMed  Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Gu L, Wang S, Yuan J, Yang H, Zhu J, Zhang H (2012) N-acetylcysteine protects against apoptosis through modulation of group I metabotropic glutamate receptor activity. PLoS One 7:e32503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzen S, Cihaner SS, Coban T (2012) Synthesis and comparison of antioxidant properties of indole-based melatonin analogue indole amino acid derivatives. Chem Biol Drug Des 79:76–83

    Article  CAS  PubMed  Google Scholar 

  • Tarohda T, Ishida Y, Kawai K, Yamamoto M, Amano R (2005) Regional distributions of manganese, iron, copper, and zinc in the brains of 6-hydroxydopamine-induced parkinsonian rats. Anal Bioanal Chem 383:224–234

    Article  CAS  PubMed  Google Scholar 

  • Telianidis J, Hung YH, Materia S, Fontaine SL (2013) Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis. Front Aging Neurosci 5:44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tisato F, Marzano C, Porchia M, Pellei M, Santini C (2010) Copper in diseases and treatments, and copper-based anticancer strategies. Med Res Rev 30:708–749

    CAS  PubMed  Google Scholar 

  • Uriu-Adams JY, Scherr RE, Lanoue L, Keen CL (2010) Influence of copper on early development: prenatal and postnatal considerations. BioFactors 36:136–152

    CAS  PubMed  Google Scholar 

  • Uversky VN, Li J, Fink AL (2001) Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson’s disease and heavy metal exposure. J Biol Chem 276:44284–44296

    Article  CAS  PubMed  Google Scholar 

  • Vashchenko G, MacGillivray RT (2013) Multi-copper oxidases and human iron metabolism. Nutrients 5:2289–2313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinish M, Anand A, Prabhakar S (2011) Altered oxidative stress levels in Indian Parkinson’s disease patients with PARK2 mutations. Acta Biochim Pol 58:165–169

    CAS  PubMed  Google Scholar 

  • Wang X, Yokoi I, Liu J, Mori A (1993) Cobalt(ll) and nickel(ll) ions as promoters of free radicals in vivo: detected directly using electron spin resonance spectrometry in circulating blood in rats. Arch Biochem Biophys 306:402–406

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Hazra TK, Mitra S, Lee HM, Englander EW (2000) Mitochondrial DNA damage and a hypoxic response are induced by CoCl2 in rat neuronal PC12 cells. Nucleic Acids Res 28:2135–2140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Moualla D, Wright JA, Brown DR (2010) Copper binding regulates intracellular alpha-synuclein localisation, aggregation and toxicity. J Neurochem 113:704–714

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Wang M, Wang B, Li M, Chen H, Yu X, Zhao Y, Feng W, Chai Z (2012) The distribution profile and oxidation states of biometals in APP transgenic mouse brain: dyshomeostasis with age and as a function of the development of Alzheimer’s disease. Metallomics 4:289–296

    Article  CAS  PubMed  Google Scholar 

  • Willis AW, Evanoff BA, Lian M et al (2010) Metal emissions and urban incident Parkinson disease: a community health study of Medicare beneficiaries by using geographic information systems. Am J Epidemiol 172:1357–1363

    Article  PubMed  PubMed Central  Google Scholar 

  • Wright JA, Wang X, Brown DR (2009) Unique copper-induced oligomers mediate alpha-synuclein toxicity. FASEB J  23:2384–2393

    Article  CAS  PubMed  Google Scholar 

  • Xiao L, Lan A, Mo L, Xu W, Jiang N, Hu F et al (2012) Hydrogen sulfide protects PC12 cells against reactive oxygen species and extracellular signal-regulated kinase 1/2-mediated downregulation of glutamate transporter-1 expression induced by chemical hypoxia. Int J Mol Med 30:1126–1132

    CAS  PubMed  Google Scholar 

  • Yang SJ, Pyen J, Lee I, Lee H, Kim Y, Kim T (2004) Cobalt chloride-induced apoptosis and extracellular signal-regulated protein kinase 1/2 activation in rat C6 glioma cells. J Biochem Mol Biol 37:480–486

    Article  CAS  Google Scholar 

  • Yang H, Jin X, Kei Lam CW, Yan SK (2011a) Oxidative stress and diabetes mellitus. Clin Chem Lab Med 49:1773–1782

    CAS  PubMed  Google Scholar 

  • Yang Z, Yang C, Xiao L, Liao X, Lan A, Wang X et al (2011b) Novel insights into the role of HSP90 in cytoprotection of H2S against chemical hypoxia-induced injury in H9c2 cardiac myocytes. Int J Mol Med 28:397–403

    CAS  PubMed  Google Scholar 

  • Youdim MB, Buccafusco JJ (2005) Multi-functional drugs for various CNS targets in the treatment of neurodegenerative disorders. Trends Pharmacol Sci 26:27–35

    Article  CAS  PubMed  Google Scholar 

  • Youdim MB, Riederer P (1993) The role of iron in senescence of dopaminergic neurons in Parkinson’s disease. J Neural Transm Suppl 40:57–67

    CAS  PubMed  Google Scholar 

  • Youdim MB, Riederer PF (2004) A review of the mechanisms and role of monoamine oxidase inhibitors in Parkinson’s disease. Neurology 63:S32–S35

    Article  PubMed  Google Scholar 

  • Youdim MB, Ben-Shachar D, Riederer P (1990) The role of monoamine oxidase, iron-melanin interaction, and intracellular calcium in Parkinson’s disease. J Neural Transm Suppl 32:239–248

    CAS  PubMed  Google Scholar 

  • Youdim MB, Stephenson G, Ben Shachar D (2004) Ironing iron out in Parkinson’s disease and other neurodegenerative diseases with iron chelators: a lesson from 6-hydroxydopamine and iron chelators, desferal and VK-28. Ann N Y Acad Sci 1012:306–325

    Article  CAS  PubMed  Google Scholar 

  • Yu WR, Jiang H, Wang J, Xie JX (2008) Copper (Cu2+) induces degeneration of dopaminergic neurons in the nigrostriatal system of rats. Neurosci Bull 24:73–78

    Article  CAS  PubMed  Google Scholar 

  • Zemlyak I, Nimon V, Brooke S, Moore T, McLaughlin J, Sapolsky R (2006) Gene therapy in the nervous system with superoxide dismutase. Brain Res 1088:12–18

    Article  CAS  PubMed  Google Scholar 

  • Zeng XS, Jia JJ, Kwon Y, Wang SD, Bai J (2014) The role of thioredoxin-1 in suppression of endoplasmic reticulum stress in Parkinson disease. Free Radic Biol Med 67:10–18

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Li G, Szeto SS, Chong CM, Quan Q, Huang C et al (2015) Examining the neuroprotective effects of protocatechuic acid and chrysin on in vitro and in vivo models of Parkinson disease. Free Radic Biol Med 84:331–343

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Youdim MB, Fridkin M (2010) Site-activated chelators targeting acetylcholinesterase and monoamine oxidase for Alzheimer’s therapy. ACS Chem Biol 5:603–610

    Article  CAS  PubMed  Google Scholar 

  • Zhong X, Lin R, Li Z, Mao J, Chen L (2014) Effects of Salidroside on cobalt chloride-induced hypoxia damage and mTOR signaling repression in PC12 cells. Biol Pharm Bull 37:1199–1206

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Liu C, Liu W, Zhang H, Zhang R, Liu J, Zhang J, Xu C, Liu L, Huang S, Chen L (2015) Rotenone induction of hydrogen peroxide inhibits mTOR-mediated S6K1 and 4E-BP1/eIF4E pathways, leading to neuronal apoptosis. Toxicol Sci 143:81–96

    Article  CAS  PubMed  Google Scholar 

  • Zhu W, Xie W, Pan T, Xu P, Fridkin M, Zheng H et al (2007) Prevention and restoration of lactacystin-induced nigrostriatal dopamine neuron degeneration by novel brain-permeable iron chelators. FASEB J 21:3835–3844

    Article  CAS  PubMed  Google Scholar 

  • Zhu W, Li X, Xie W, Luo F, Kaur D, Andersen JK et al (2010) Genetic iron chelation protects against proteasome inhibition-induced dopamine neuron degeneration. Neurobiol Dis 37:307–313

    Article  PubMed  CAS  Google Scholar 

  • Zou W, Yan M, Xu W, Huo H, Sun L, Zheng Z, Liu X (2001) Cobalt chloride induces PC12 cells apoptosis through reactive oxygen species and accompanied by AP-1 activation. J Neurosci Res 64:646–653

    Article  CAS  PubMed  Google Scholar 

  • Zou W, Zeng J, Zhuo M, Xu W, Sun L, Wang J, Liu X (2002) Involvement of caspase-3 and p38 mitogen-activated protein kinase in cobalt choride-induced apoptosis in PC12 cells. J Neurosci Res 67:837–843

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the National Natural Science Foundation of China (Grant No. 11375213, 21390411), National Basic Research Program of China (Grant No. 2011CB933101), Hundred Talents Program of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, A.P., Chen, J., Chai, Z.F. et al. The neurotoxicity of iron, copper and cobalt in Parkinson’s disease through ROS-mediated mechanisms. Biometals 29, 665–678 (2016). https://doi.org/10.1007/s10534-016-9942-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-016-9942-4

Keywords

Navigation