Skip to main content
Log in

Dysregulation of autophagy and Parkinson’s disease: the MEF2D link

  • Apoptosis in the aging brain
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Autophagy refers to the process by which lysosomes degrade intracellular components. Three basic forms of it, macro-, micro-, and chaperon-mediated autophagy, exist in cells. Several studies have shown that dysregulation of macroautophagy compromises the viability of neurons. Recent evidence indicates that chaperone-mediated autophagy plays a role in direct degradation of neuronal transcription factor MEF2D, a protein known to promote neuronal survival. Disruption of this regulatory pathway by α-synuclein leads to neuronal stress, which may underlie neuronal loss in Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Cookson MR (2009) Alpha-synuclein and neuronal cell death. Mol Neurodegener 4:9

    Article  PubMed  Google Scholar 

  2. Abeliovich A, Flint Beal M (2006) Parkinsonism genes: culprits and clues. J Neurochem 99:1062–1072

    Article  CAS  PubMed  Google Scholar 

  3. Hatcher JM, Pennell KD, Miller GW (2008) Parkinson’s disease and pesticides: a toxicological perspective. Trends Pharmacol Sci 29:322–329

    Article  CAS  PubMed  Google Scholar 

  4. Henchcliffe C, Beal MF (2008) Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol 4:600–609

    Article  CAS  PubMed  Google Scholar 

  5. Przedborski S, Ischiropoulos H (2005) Reactive oxygen and nitrogen species: weapons of neuronal destruction in models of Parkinson’s disease. Antioxid Redox Signal 7:685–693

    Article  CAS  PubMed  Google Scholar 

  6. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93

    Article  CAS  PubMed  Google Scholar 

  7. Kim I, Rodriguez-Enriquez S, Lemasters JJ (2007) Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462:245–253

    Article  CAS  PubMed  Google Scholar 

  8. Majeski AE, Dice JF (2004) Mechanisms of chaperone-mediated autophagy. Int J Biochem Cell Biol 36:2435–2444

    Article  CAS  PubMed  Google Scholar 

  9. Chiang HL, Dice JF (1988) Peptide sequences that target proteins for enhanced degradation during serum withdrawal. J Biol Chem 263:6797–6805

    CAS  PubMed  Google Scholar 

  10. Cuervo AM, Dice JF (2000) Regulation of lamp2a levels in the lysosomal membrane. Traffic 1:570–583

    Article  CAS  PubMed  Google Scholar 

  11. Kiffin R, Christian C, Knecht E, Cuervo AM (2004) Activation of chaperone-mediated autophagy during oxidative stress. Mol Biol Cell 15:4829–4840

    Article  CAS  PubMed  Google Scholar 

  12. Rubinsztein DC, DiFiglia M, Heintz N et al (2005) Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy 1:11–22

    Article  CAS  PubMed  Google Scholar 

  13. Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC (2003) Alpha-synuclein is degraded by both autophagy and the proteasome. J Biol Chem 278:25009–25013

    Article  CAS  PubMed  Google Scholar 

  14. Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D (2004) Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305:1292–1295

    Article  CAS  PubMed  Google Scholar 

  15. Kabuta T, Furuta A, Aoki S, Furuta K, Wada K (2008) Aberrant interaction between Parkinson disease-associated mutant UCH-L1 and the lysosomal receptor for chaperone-mediated autophagy. J Biol Chem 283:23731–23738

    Article  CAS  PubMed  Google Scholar 

  16. Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183:795–803

    Article  CAS  PubMed  Google Scholar 

  17. Plowey ED, Cherra SJ 3rd, Liu YJ, Chu CT (2008) Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells. J Neurochem 105:1048–1056

    Article  CAS  PubMed  Google Scholar 

  18. Chu CT (2009) Tickled PINK1: mitochondrial homeostasis and autophagy in recessive Parkinsonism. Biochim Biophys Acta 1802:20–28

    PubMed  Google Scholar 

  19. Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB (2007) Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species. J Cell Sci 120:4155–4166

    Article  CAS  PubMed  Google Scholar 

  20. Dagda RK, Zhu J, Kulich SM, Chu CT (2008) Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: implications for Parkinson’s disease. Autophagy 4:770–782

    CAS  PubMed  Google Scholar 

  21. Gonzalez-Polo RA, Niso-Santano M, Ortiz-Ortiz MA et al (2007) Inhibition of paraquat-induced autophagy accelerates the apoptotic cell death in neuroblastoma SH-SY5Y cells. Toxicol Sci 97:448–458

    Article  CAS  PubMed  Google Scholar 

  22. Yu YT, Breitbart RE, Smoot LB, Lee Y, Mahdavi V, Nadal-Ginard B (1992) Human myocyte-specific enhancer factor 2 comprises a group of tissue-restricted MADS box transcription factors. Genes Dev 6:1783–1798

    Article  CAS  PubMed  Google Scholar 

  23. Mao Z, Wang X (2006) Expression, function, and regulation of transcription factor MEF2 in neurons. In: Thiel G (ed) Transcription factors in the nervous system, chapter 14. Wiley-VCH, pp 285–305

  24. Mao Z, Bonni A, Xia F, Nadal-Vicens M, Greenberg ME (1999) Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science 286:785–790

    Article  CAS  PubMed  Google Scholar 

  25. Liu L, Cavanaugh JE, Wang Y, Sakagami H, Mao Z, Xia Z (2003) ERK5 activation of MEF2-mediated gene expression plays a critical role in BDNF-promoted survival of developing but not mature cortical neurons. Proc Natl Acad Sci USA 100:8532–8537

    Article  CAS  PubMed  Google Scholar 

  26. Gong X, Tang X, Wiedmann M et al (2003) Cdk5-mediated inhibition of the protective effects of transcription factor MEF2 in neurotoxicity-induced apoptosis. Neuron 38:33–46

    Article  CAS  PubMed  Google Scholar 

  27. Tang X, Wang X, Gong X et al (2005) Cyclin-dependent kinase 5 mediates neurotoxin-induced degradation of the transcription factor myocyte enhancer factor 2. J Neurosci 25:4823–4834

    Article  CAS  PubMed  Google Scholar 

  28. Brion JP, Couck AM (1995) Cortical and brainstem-type Lewy bodies are immunoreactive for the cyclin-dependent kinase 5. Am J Pathol 147:1465–1476

    CAS  PubMed  Google Scholar 

  29. Nakamura S, Kawamoto Y, Nakano S, Akiguchi I, Kimura J (1997) p35nck5a and cyclin-dependent kinase 5 colocalize in Lewy bodies of brains with Parkinson’s disease. Acta Neuropathol 94:153–157

    Article  CAS  PubMed  Google Scholar 

  30. Henchcliffe C, Burke RE (1997) Increased expression of cyclin-dependent kinase 5 in induced apoptotic neuron death in rat substantia nigra. Neurosci Lett 230:41–44

    Article  CAS  PubMed  Google Scholar 

  31. Smith PD, Crocker SJ, Jackson-Lewis V et al (2003) Cyclin-dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson’s disease. Proc Natl Acad Sci USA 100:13650–13655

    Article  CAS  PubMed  Google Scholar 

  32. Smith PD, Mount MP, Shree R et al (2006) Calpain-regulated p35/cdk5 plays a central role in dopaminergic neuron death through modulation of the transcription factor myocyte enhancer factor 2. J Neurosci 26:440–447

    Article  CAS  PubMed  Google Scholar 

  33. Yang Q, She H, Gearing M et al (2009) Regulation of neuronal survival factor MEF2D by chaperone-mediated autophagy. Science 323:124–127

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Brian Ciliax for his critical comments. This work was supported by NIH grants to Z. M. (AG023695, NS048254, ES015317, ES016731-0002) and Robert Woodruff Health Sciences Center Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zixu Mao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Q., Mao, Z. Dysregulation of autophagy and Parkinson’s disease: the MEF2D link. Apoptosis 15, 1410–1414 (2010). https://doi.org/10.1007/s10495-010-0475-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-010-0475-y

Keywords

Navigation