Skip to main content

Advertisement

Log in

N-acetyl-cysteine protects liver from apoptotic death in an animal model of fulminant hepatic failure

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Background: This work was undertaken to investigate whether treatment with N-acetyl-cysteine (NAC) prevents oxidative stress and inhibits the apoptotic pathways in an animal model of fulminant hepatic failure. Methods: Rabbits were experimentally infected with 2×104 hemagglutination units of a rabbit hemorrhagic disease virus isolate. Results: The spontaneous mortality rate of infected animals was 67% at 36 h post infection (pi) and 90% at 48 h pi. This percentage decreased significantly in animals receiving an i.p. injection of NAC (150 mg/kg body way/daily), for 7 days prior to infection. From 36 h pi marked increases were detected in blood levels of transaminases, lactate dehydrogenase, bilirubin and the oxidised/reduced glutathione ratio. All these effects were significantly prevented by NAC treatment. The Bax to Bcl-2 relative expression, the expression of FasL, cytochrome c and PARP-1, and the activity of caspase 3 were significantly increased at 36 and 48 h pi in infected animals. These changes were markedly reduced in animals treated with NAC, with the exception of FasL. Conclusion: Our results suggest a potential hepatoprotective role of NAC in fulminant hepatic failure, mediated partially through the modulation of the intrinsic pathway of apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gavhami S, Hashemi M, Kadkhoda K, Alavian SM, Bay GH, Los M (2005) Apoptosis in liver diseases – detection and therapeutic applications. Med Sci Monit 11:337–345

    Google Scholar 

  2. Pretet JL, Pelletier L, Bernard B, Coumes-Marquet S, Kantelip B, Mouglin C (2003) Apoptosis participates to liver damage in HSV-induced fulminat hepatitis. Apoptosis 8:655–663

    Article  PubMed  Google Scholar 

  3. Sakaida I, Kimura T, Yamasaki T, Fukumoto Y, Watanabe K, Aoyama M et al (2005) Cytochrome c is a possible new marker for fulminant hepatitis in humans. J Gastroenterol 40:179–185

    Article  PubMed  CAS  Google Scholar 

  4. Schuchmann M, Galle PR (2001) Apoptosis in liver disease. Eur J Gastroenterol Hepatol 13:785–790

    Article  PubMed  CAS  Google Scholar 

  5. Delhalle S, Duvoix A, Schnekenburger M, Morceau F, Dicato M, Diederich M (2003) An introduction to the molecular mechanisms of apoptosis. Ann NY Acad Sci 1010:1–8

    Article  PubMed  CAS  Google Scholar 

  6. Narita M, Shimizu S, Ito T, Chittenden T, Lutz RJ, Matsuda H et al (1998) Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc Natl Acad Sci USA 95:14681–14686

    Article  PubMed  CAS  Google Scholar 

  7. D'Agostini F, Izzotti A, Balansky RM, Bennicelli C, Flora SD (2005) Modulation of apoptosis by cancer chemopreventive agents. Mutat Res 591:173–186

    PubMed  Google Scholar 

  8. Konarkowska B, Aitken JF, Kistler J, Zhang S, Cooper GJ (2005) Thiol reducing compounds prevent human amylin-evoked cytotoxicity. FEBS J 272:4949–4959

    Article  PubMed  CAS  Google Scholar 

  9. Wu YJ, Muldoon LL, Neuwelt EA (2005) The chemoprotective agent N-acetylcysteine blocks cisplatin-induced apoptosis through caspase signalling pathway. J Pharmacol Exp Ther 312:424–431

    Article  PubMed  CAS  Google Scholar 

  10. Oh SH, Lim SC (2006) A rapid and transient ROS generation by cadmium triggers apoptosis via caspase-dependent pathway in HepG2 cells and this is inhibited through N-acetyl-cysteine-mediated catalase upregulation. Toxicol Appl Pharmacol 212:212–223

    Article  PubMed  CAS  Google Scholar 

  11. Zachwieja J, Zaniew M, Bobkowski W, Stefaniak E, Warzywoda A, Ostalka-Novicka D et al (2005) Beneficial in vitro effect of N-acetyl-cysteine on oxidative stress and apoptosis. Pediatr Nephrol 20:725–731

    Article  PubMed  Google Scholar 

  12. Sadowska AM, Manuel-y-Keenoy B, De Backer BA (in press) Antioxidant and anti-inflammatory efficacy of NAC in the treatment of COPD: discordant in vitro and in vivo dose-effects: a review. Pulm Pharmacol Ther. doi:10.1016/j.pupt.2005.12.007

  13. Quadrilatero J, Hoffman-Goetz L (2005) N-acetyl-L-cysteine protects intestinal lymphocytes from apoptotic death after acute exercise in adrenalectomized mice. Am J Physiol 288:R1664–R1672

    CAS  Google Scholar 

  14. Mikami O, Park JH, Kimura T, Ochiai K, Itakura C (1999) Hepatic lesions in young rabbits experimentally infected with rabbit haemorrhagic disease virus. Res Vet Sci 66:237–242

    Article  PubMed  CAS  Google Scholar 

  15. Park JH, Lee Y, Itakura C (1995) Pathogenesis of acute necrotic hepatitis in rabbit hemorrhagic disease. Lab Anim Sci 45:445-449

    PubMed  Google Scholar 

  16. Alonso C, Oviedo JM, Martin-Alonso JM, Diaz E, Boga JA, Parra, F (1998) Programmed cell death in the pathogenesis of rabbit hemorrhagic disease. Arch Virol 143:321–332

    Article  PubMed  CAS  Google Scholar 

  17. Ferreira PG, Costa-e-Silva A, Monteiro E, Oliveira MJ, Aguas AP (2004) Transient decrease in blood heterophils and sustained liver damage caused by calicivirus infection of young rabbits that are naturally resistant to rabbit haemorrhagic disease. Res Vet Sci 76:83–94

    Article  PubMed  CAS  Google Scholar 

  18. Tuñón MJ, Sánchez-Campos S, García-Ferreras J, Álvarez M, Jorquera F, González-Gallego J (2003) Rabbit hemorrhagic viral disease: characterization of a new animal model of fulminant liver failure. J Lab Clin Med 141:272–278

    Article  PubMed  Google Scholar 

  19. Belanguer M, Butterworth RF (2005) Acute liver failure: a critical appraisal of available animal models. Metab Brain Dis 20:409–423

    Article  Google Scholar 

  20. Sánchez-Campos S, Álvarez M, Culebras JM, González-Gallego J, Tuñón MJ (2004) Pathogenic molecular mechanisms in an animal model of fulminant hepatic failure: rabbit hemorrhagic viral disease. J Lab Clin Med 144:215–222

    Article  PubMed  CAS  Google Scholar 

  21. O.I.E. (2000) Rabbit haemorrhagic disease. In: Manual of Standards for diagnostic tests and vaccines. World Organization for Animal Health, Paris, pp 762–776

  22. Markwell MA, Haas SM, Bieber LL, Tolbert NE (1978) A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87:206–210

    Article  PubMed  CAS  Google Scholar 

  23. Hissin PJ, Hilf RA (1976) Fluorimetric method for determination of oxidised and reduced glutathione in tissues. Anal Biochem 74:214–26

    Article  PubMed  CAS  Google Scholar 

  24. Tuñón MJ, Sánchez-Campos S, Gutiérrez B, Culebras MJ, González-Gallego J (2003) Effects of FK506 and rapamycin on generation of reactive oxygen species, nitric oxide production and nuclear factor kappa B activation in rat hepatocytes. Biochem Pharmacol 66:439–445

    Article  PubMed  CAS  Google Scholar 

  25. Liu SJ, Xue HP, Pu BQ, Quia NH (1984) A new viral disease in rabbits. Anim Husb Vet Med 16:253–255

    Google Scholar 

  26. Prieto JM, Fernández F, Alvarez V, Espi A, García Marín JF, Alvarez M et al (2000) Immunohistochemical localisation of rabbit haemorrhagic disease virus VP-60 antigen in early infection of young and adult rabbits. Res Vet Sci 68:181–187

    Article  PubMed  CAS  Google Scholar 

  27. Ferreira PG, Costa e Silva A, Oliveira MJR, Monteiro E, Cunha EM, Águas AP (2006) Severe leukopenia and liver biochemistry changes in adult rabbits after calicivirus infection. Res Vet Sci 80:218–225

    Article  PubMed  CAS  Google Scholar 

  28. Ramiro-Ibañez F, Martín-Alonso JM, García Palencia P, Parra F, Alonso C (1999) Macrophage tropism of rabbit hemorrhagic disease virus is associated with vascular pathology. Virus Res 60:21–28

    Article  PubMed  Google Scholar 

  29. Kumar D, Kirshenbaum L, Li T, Danelisen I, Singal P (1999) Apoptosis in isolated adult cardiomyocytes exposed to adriamycin. Ann NY Acad Sci 874:156–168

    Article  PubMed  CAS  Google Scholar 

  30. Ohno M, Takemura G, Ohno A, Misao R, Hayakawa Y, Minatoguchi S et al (1998) “Apoptotic” myocytes in infarct area in rabbit hearts may be oncotic myocytes with DNA fragmentation: analysis by immunogold electron microscopy combined with in situ nick end-labeling. Circulation 98:1422–1430

    PubMed  CAS  Google Scholar 

  31. Fink SL, Cookson BT (2005) Apoptosis, pyroptosis and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 73:1907–1916

    Article  PubMed  CAS  Google Scholar 

  32. Nagata S (1997) Apoptosis by death factor. Cell 88:355–365

    Article  PubMed  CAS  Google Scholar 

  33. Galle PR, Hofmann WJ, Walczak H et al (1995) Involvement of the CD95 (APO-1/Fas) receptor and ligand in liver damage. J Exp Med 182:1223–1230

    Article  PubMed  CAS  Google Scholar 

  34. Zhang H, Cook J, Nickel J, Yang P, Wang Z, Wang X, Curiel DT, Zhou T, Mountz JD et al (2000) Reduction of liver Fas expression by an antisense oligonucleotide protects mice from fulminant hepatitis. Nat Biotechnol 18:862–867

    Article  PubMed  CAS  Google Scholar 

  35. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  PubMed  CAS  Google Scholar 

  36. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136

    Article  PubMed  CAS  Google Scholar 

  37. Susin SA, Zamzami N, Castedo M, Hirsch T, Marchetti P, Macho A et al (1996) Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med 184:1331–1341

    Article  PubMed  CAS  Google Scholar 

  38. Oltvai ZN, Millima CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homology bax, that accelerates programmed cell death. Cell 74:609–619

    Article  PubMed  CAS  Google Scholar 

  39. Yang J, Korsmeyer SJ (1996) Molecular apoptosis: a discourse on the BCL2 family and cell death. Blood 88:386–401

    PubMed  CAS  Google Scholar 

  40. Cain K, Freathy C (2001) Liver toxicity and apoptosis: role of the TGF-β1, cytochrome c and the apoptosome. Toxicol Lett 120:307–315

    Article  PubMed  CAS  Google Scholar 

  41. Mauriz JL, González P, Jorquera F, Olcoz JL, González-Gallego J (2003) Caspase inhibition does not protect against liver damage in hemorrhagic shock. Shock 19:33–37

    Article  PubMed  CAS  Google Scholar 

  42. Soldani C, Scovassi AI (2002) Poly(ADP-ribose) polymerase-1 cleavage during apoptosis. An update. Apoptosis 7:321–328

    Article  PubMed  CAS  Google Scholar 

  43. Deshpande VS, Kehrer JP (2006) Oxidative stress-driven mechanisms of nordihydroguaiaretic acid-induced apoptosis in FL5.12 cells. Toxicol Appl Pharmacol 214:230–236

    Google Scholar 

  44. Aoki H, Kang PM, Hampe J, Yoshimura K, Noma T, Matsuzaki M et al (2002) Direct activation of mitochondrial apoptosis machinery of c-Jun N-terminal kinase in adult cardiac myocytes. J Biol Chem 277:10244–10250

    Article  PubMed  CAS  Google Scholar 

  45. Oskarsson HJ, Coppey L, Weiss RM, Li WG (2000) Antioxidants attenuate myocyte apoptosis in the remote non-infarcted myocardium following large myocardial infarction. Cardiovasc Res 45:679–687

    Article  PubMed  CAS  Google Scholar 

  46. Majano PL, Medina J, Zuiba I, Sunyer L, Lara-Pezzi E, Maldonado-Rodríguez A et al (2004) N-acetyl-cysteine modulates inducible nitric oxide synthase gene expression in human hepatocytes. J Hepatol 40:632–637

    Article  PubMed  CAS  Google Scholar 

  47. Sánchez-Campos S, López-Acebo R, González P, Culebras JM, Tuñón MJ, González-Gallego J (1998) Cholestasis and alterations of glutathione metabolism induced by FK506 in the rat. Transplantation 68:84–88

    Article  Google Scholar 

  48. Simon HU, Haj-Yehia A, Levi-Schaffer F (2005) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5:415–418

    Article  Google Scholar 

  49. Aronis A, Melendez JA, Golan O, Shilo S, Dicter N, Tirosh O (2003) Potentiation of Fas-mediated apoptosis by attenuated production of mitochondria-derived reactive oxygen species. Cell Death Differ 10:335–344

    Article  PubMed  CAS  Google Scholar 

  50. Devadas S, Hinshaw JA, Zaritskaya L, Williams MS (2003) Fas-stimulated generation of reactive oxygen species or exogenous oxidative stress sensitize cells to Fas-mediated apoptosis. Free Radic Biol Med 35:648–661

    Article  PubMed  CAS  Google Scholar 

  51. Chasey D, Lucas MH, Westcott DG, Sharp G, Kitching A, Hughes SK (1995) Development of diagnostic approaches to the identification of rabbit haemorrhagic disease. Vet Record 137:158–160

    CAS  Google Scholar 

  52. Granzow H, Weiland F, Strebelow HG, Liu CM, Schirrmeier H (1996) Rabbit hemorrhagic disease virus (RHDV): ultrastructure and biochemical studies of typical and core-like particles in liver homogenates. Virus Res 41:163–172

    Article  PubMed  CAS  Google Scholar 

  53. Shien JH, Shieh HK, Lee LH (1998) Characterization of rabbit haemorrhagic disease virus field isolates in Taiwan. J Virol Meth 27:27–33

    Article  Google Scholar 

  54. Lioy J, Ho WH, Cutilli JR, Polin RA, Douglas SD (1993) Thiol suppression of human immunodeficiency virus type 1 replication in primary cord blood monocyte-derived macrophages in vitro. J Clin Invest 91:495–498

    Article  PubMed  CAS  Google Scholar 

  55. Cavallini L, Alexandre A (2000) Oral N-acetylcysteine increases the production of anti-HIV chemokines in peripheral blood mononuclear cells. Life Sci 67:147–154

    Article  PubMed  CAS  Google Scholar 

  56. Kalamasz D, Long SA, Taniguchi R, Buckner JH, Berenson RJ, Bonyhadi M (2004) Optimization of human T-cell expansion ex vivo using magnetic beads conjugated with anti-CD3 and anti-CD28 antibodies. J Immunother 27:405–418

    Article  PubMed  CAS  Google Scholar 

  57. Migayawa R, Ichida T, Yamagiwa S, Miyaji C, Watanabe H, Sato Y et al (2005) Hepatic natural killer and natural killer T cells markedly decreased in two cases of drug-induced fulminant hepatic failure rescued by living donor liver transplantation. J Gastroenterol Hepatol 20:1126–1130

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Tuñón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

San-Miguel, B., Alvarez, M., Culebras, J.M. et al. N-acetyl-cysteine protects liver from apoptotic death in an animal model of fulminant hepatic failure. Apoptosis 11, 1945–1957 (2006). https://doi.org/10.1007/s10495-006-0090-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-0090-0

Keywords

Navigation