Skip to main content

Advertisement

Log in

Amino-functionalized pore-expanded SBA-15 for CO2 adsorption

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The adsorption of CO2 on pore-expanded SBA-15 mesostructured silica functionalized with amino groups was studied. The synthesis of conventional SBA-15 was modified to obtain pore-expanded materials, with pore diameters from 11 to 15 nm. Post-synthesis functionalization treatments were carried out by grafting with diethylenetriamine (DT) and by impregnation with tetraethylenepentamine (TEPA) and polyethyleneimine (PEI). The adsorbents were characterized by X-ray diffraction, N2 adsorption–desorption at 77 K, elemental analysis and Transmission Electron Microscopy. CO2 capture was studied by using a volumetric adsorption technique at 45 °C. Consecutive adsorption–desorption experiments were also conducted to check the cyclic behaviour of adsorbents in CO2 capture. An improvement in CO2 adsorption capacity and efficiency of amino groups was found for pore-expanded SBA-15 impregnated materials in comparison with their counterparts prepared from conventional SBA-15 with smaller pore size. PEI and TEPA-based adsorbents reached significant CO2 uptakes at 45 °C and 1 bar (138 and 164 mg CO2/g, respectively), with high amine efficiencies (0.33 and 0.37 mol CO2/mol N), due to the positive effect of the larger pore diameter in the diffusion and accessibility of organic groups. Pore-expanded SBA-15 samples grafted with DT and impregnated with PEI showed a good stability after several adsorption–desorption cycles of pure CO2. PEI-impregnated adsorbent was tested in a fixed bed reactor with a diluted gas mixture containing 15 % CO2, 5 % O2, 80 % Ar and water (45 °C, 1 bar). A noteworthy adsorption capacity of 171 mg CO2/g was obtained in these conditions, which simulate flue gas after the desulphurization step in a thermal power plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aziz, B., Hedin, N., Bacsik, Z.: Quantification of chemisorption and physisorption of carbon dioxide on porous silica modified by propylamines: effect of amine density. Micro. Microporous Mater. 159, 42–49 (2012)

    Article  CAS  Google Scholar 

  • Barrer, R.M.: Zeolites and Clay Minerals as Sorbents and Molecular Sieves. Academic Press, London (1978)

    Google Scholar 

  • Buckingham, A.D., Disch, R.L.: The quadrupole moment of the carbon dioxide molecule. Proc. R. Soc. London, Ser. A, 273, 275–289 (1963).

    Google Scholar 

  • Burkett, S.L., Sims, S.D., Mann, S.: Synthesis of hybrid inorganic–organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors. Chem. Commun. 11, 1367–1368 (1996)

    Article  Google Scholar 

  • Calleja, G., Sanz, R., Arencibia, A., Sanz-Pérez, E.S.: Influence of drying conditions on amine-functionalized SBA-15 as adsorbent of CO2. Top. Catal. 54, 135–145 (2011)

    Article  CAS  Google Scholar 

  • Cao, L., Man, T., Kruk, M.: Synthesis of ultra-large-pore SBA-15 silica with two-dimensional hexagonal structure using triisopropylbenzene as micelle expander. Chem. Mater. 21, 1144–1153 (2009)

    Article  CAS  Google Scholar 

  • Caplow, M.: Kinetics of carbamate formation and breakdown. J. Am. Chem. Soc. 24, 6795–6803 (1968)

    Article  Google Scholar 

  • Chen, C., Yang, S.T., Ahn, W.S., Ryoo, R.: Amine-impregnated silica monolith with hierarchical pore structure: enhancement of CO2 capture capacity. Chem. Commun. 24, 3627–3629 (2009)

    Article  Google Scholar 

  • Chen, C., Son, W.J., You, K.S., Ahn, J.W., Ahn, W.S.: Carbon dioxide capture using amine-impregnated HMS having textural mesoporosity. Chem. Eng. J. 161, 46–52 (2010)

    Article  CAS  Google Scholar 

  • Choi, S., Drese, J.H., Jones, C.W.: Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. Chem. Sus. Chem. 2, 796–854 (2009)

    Article  CAS  Google Scholar 

  • Fan, J., Yu, C., Lei, J., Zhang, Q., Li, T., Tu, B., Zhou, W., Zhao, D.: Low-temperature strategy to synthesize highly ordered mesoporous silicas with very large pores. J. Am. Chem. Soc. 127, 10794–10795 (2005)

    Article  CAS  Google Scholar 

  • Franchi, R.S., Harlick, P.J.E., Sayari, A.: Application of pore-expanded mesoporous silica. 2. Development of a high-capacity, water tolerant adsorbent for CO2. Ind. Eng. Chem. Res. 44, 8007–8013 (2005)

    Article  CAS  Google Scholar 

  • Gaikwad, R., Boward, W.L., DePriest W.: Wet flue gas desulfurization technology evaluation. Project Number 11311-000. Sargent & Lundy, National Lime Association (2003).

  • Harlick, P.J.E., Sayari, A.: Applications of pore-expanded mesoporous silica. 5. Triamine grafted material with exceptional CO2 dynamic and equilibrium adsorption performance. Ind. Eng. Chem. Res. 46, 446–458 (2007)

    Article  CAS  Google Scholar 

  • Haynes, J.M.: Colloid Science, vol. 2. Chemical Society, London (1975)

    Book  Google Scholar 

  • Heydari-Gorji, A., Belmabkhout, Y., Sayari, A.: Polyethylenimine-impregnated mesoporous silica: effect of amine loading and surface alkyl chains on CO2 adsorption. Langmuir 27, 12411–12416 (2011)

    Article  CAS  Google Scholar 

  • Knowles, G.P., Delaney, S.W., Chaffee, A.L.: Diethylenetriamine[propyl(silyl)]-functionalized (DT) mesoporous silicas as CO2 adsorbents. Ind. Eng. Chem. Res. 45, 2626–2633 (2006)

    Article  CAS  Google Scholar 

  • Leal, O., Bolívar, C., Ovalles, C., García, J.J., Espidel, Y.: Reversible adsorption of carbon dioxide on amine surface-bonded silica gel. Inorg. Chim. Acta 240, 183–189 (1995)

    Article  CAS  Google Scholar 

  • Lettow, J.S., Han, Y.J., Schmidt-Winkel, P., Yang, P., Zhao, D., Stucky, G.D., Ying, J.Y.: Hexagonal to mesocellular foam phase transition in polymer-templated mesoporous silicas. Langmuir 16, 8291–8295 (2000)

    Article  CAS  Google Scholar 

  • Lim, M.H., Stein, A.: Comparative studies of grafting and direct syntheses of inorganic-organic hybrid mesoporous materials. Chem. Mater. 11, 3285–3295 (1999)

    Article  CAS  Google Scholar 

  • Macquarrie, D.J.: Direct preparation of organically modified MCM-type materials. Preparation and characterisation of aminopropyl-MCM and 2-cyanoethyl–MCM. Chem. Commun. 16, 1961–1962 (1996)

    Article  Google Scholar 

  • Metz, B., Davidson, O., de Coninck, H., Loos, M., Meyer, L. (eds.): IPCC special report on carbon dioxide capture and storage. Cambridge Univ. Press, Cambridge, New York (2005)

  • Nagarajan, R.: Solubilization of hydrocarbons and resulting aggregate shape transitions in aqueous solutions of Pluronic® (PEO-PPO-PEO) block copolymers. Colloids Surf. 16, 55–72 (1999)

    Article  CAS  Google Scholar 

  • Nagarajan, R., Barry, M., Ruckenstein, E.: Unusual selectivity in solubilization by block copolymer micelles. Langmuir 2, 210–215 (1986)

    Article  CAS  Google Scholar 

  • Namba, S., Mochizuki, A.: Efect of auxiliary chemicals on preparation of silica MCM-41. Res. Chem. Intermed. 24(5), 561–570 (1998)

    Article  CAS  Google Scholar 

  • Samanta, A., Zhao, A., Shimizu, G.K.H., Sarkar, P., Guota, R.: Post-combustion CO2 capture using solid sorbents: a review. Ind. Eng. Chem. Res. 51(4), 1438–1463 (2012)

    Article  CAS  Google Scholar 

  • Sanz, R., Calleja, G., Arencibia, A., Sanz-Pérez, E.S.: CO2 adsorption on branched polyethyleneimine-impregnated mesoporous silica SBA-15. Appl. Surf. Sci. 256, 5323–5328 (2010)

    Article  CAS  Google Scholar 

  • Sanz, R., Calleja, G., Arencibia, A., Sanz-Pérez, E.S.: Amino functionalized mesostructured SBA-15 silica for CO2 capture: exploring the relation between the adsorption capacity and the distribution of amino groups by TEM. Micropor. Mesopor. Mater. 158, 309–317 (2012)

    Article  CAS  Google Scholar 

  • Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl. Chem. 57, 603–620 (1985)

    Article  CAS  Google Scholar 

  • Son, W.J., Choi, J.S., Ahn, W.S.: Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials. Microp. Mesop. Mater. 113, 31–40 (2008)

    Article  CAS  Google Scholar 

  • Stein, A., Melde, B.J., Schroden, R.C.: Hybrid inorganic-organic mesoporous silicates-nanoscopic reactors coming of age. Adv. Mater. 12, 1403–1419 (2000)

    Article  CAS  Google Scholar 

  • Sun, J., Zhang, H., Ma, D., Chen, Y., Bao, X., Klein-Hoffmann, A., Pfänder, N., Su, D.S.: Alkanes-assisted low temperature formation of highly ordered SBA-15 with large cylindrical mesopores. Chem. Commun. 42, 5343–5345 (2005)

    Article  Google Scholar 

  • Tontiwachwuthikul, P., Meisen, A., Lim, C.J.: Solubility of carbon dioxide in 2-amino-2-methyl-1-propanol solutions. J. Chem. Eng. Data 36, 130–133 (1991)

    Article  CAS  Google Scholar 

  • US Department of Energy (DOE).: Office of Science and Office of Fossil Energy: Carbon sequestration. State of science. DOE/OS-FE, Washington, DC (1999)

  • van der Voort, P., Gills-D’Hamers, L., Vrancken, K.C., Vansant, E.F.: Effect of porosity on the distribution and reactivity of hydroxyl groups on the surface of silica gel. Faraday Trans. 87(24), 3899–3905 (1991)

    Article  Google Scholar 

  • Xu, X., Song, C., Andrésen, J.M., Miller, B.G., Scaroni, A.W.: Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture. Energy Fuels 16, 1463–1469 (2002)

    Article  CAS  Google Scholar 

  • Yue, M.B., Chun, Y., Cao, Y., Dong, X., Zhu, J.H.: CO2 capture by as-prepared SBA-15 with an occluded organic template. Adv. Funct. Mater. 16, 1717–1722 (2006)

    Article  CAS  Google Scholar 

  • Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrikson, G.H., Chmelka, B.F., Stucky, G.D.: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548–552 (1998a).

  • Zhao, D., Huo, Q., Feng, J., Chmelka, B.F., Stucky, G.D.: Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 120, 6024–6036 (1998b).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Calleja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olea, A., Sanz-Pérez, E.S., Arencibia, A. et al. Amino-functionalized pore-expanded SBA-15 for CO2 adsorption. Adsorption 19, 589–600 (2013). https://doi.org/10.1007/s10450-013-9482-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-013-9482-y

Keywords

Navigation