Skip to main content
Log in

The two-level local projection stabilization as an enriched one-level approach

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The two-level local projection stabilization is considered as a one-level approach in which the enrichments on each element are piecewise polynomial functions. The dimension of the enrichment space can be significantly reduced without losing the convergence order. On triangular meshes, for example, using continuous piecewise polynomials of degree r ≥ 1, only 2r − 1 functions per macro-cell are needed for the enrichment compared to r 2 in the two-level approach. In case of the Stokes problem r − 1 functions per macro-cell are already sufficient to guarantee stability and to preserve convergence order. On quadrilateral meshes the corresponding reduction rates are even higher. We give examples of “reduced” two-level approaches and study how the constant in the local inf-sup condition for the one-level and different two-level approaches, respectively, depends on the polynomial degree r.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Becker, R., Braack, M.: A two-level stabilization scheme for the Navier-Stokes equations. In: Numerical Mathematics and Advanced Applications, pp. 123–130. Springer-Verlag (2004)

  2. Braack, M., Burman, E.: Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method. SIAM J. Numer. Anal. 43, 2544–2566 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Braack, M., Lube, G.: Finite elements with local projection stabilization for incompressible flow problems. J. Comput. Math. 27, 116–147 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Ganesan, S., Matthies, G., Tobiska, L.: Local projection stabilization of equal order interpolation applied to the Stokes problem. Math. Comput. 77(264), 2039–2060 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Knobloch, P.: A generalization of the local projection stabilization for convection-diffusion-reaction equations. SIAM J. Numer. Anal. 48(2), 659–680 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Knobloch, P., Tobiska, L.: On the stability of finite element discretizations of convection-diffusion-reaction equations. IMA J. Numer. Anal. 31(1), 147–164 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  7. Matthies, G., Skrzypacz, P., Tobiska, L.: A unified convergence analysis for local projection stabilisations applied to the Oseen problem. Math. Model. Numer. Anal. M2AN 41(4), 713–742 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Matthies, G., Skrzypacz, P., Tobiska, L.: Stabilization of local projection type applied to convection-diffusion problems with mixed boundary conditions. ETNA 32, 90–105 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Matthies, G., Tobiska, L.: The inf-sup condition for the mapped \(Q_k-P_{k-1}^\text{disc}\) element in arbitrary space dimensions. Computing 69, 119–139 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Olson, E.T., Douglas, J.: Bounds on the spectral condition numbers of matrices arising in the p-versionof the finite element method. Numer. Math. 69, 333–352 (1995)

    Article  MathSciNet  Google Scholar 

  11. Otto, F.: Die Babuška-Brezzi-Bedingung für das Taylor-Hood-Element. Master’s thesis, Math. Inst. der Universität Bonn (1990)

  12. Rapin, G., Lube, G., Löwe, J.: Applying local projection stabilization to inf-sup stable elements. In: Kunisch, K., Of, G., Steinbach, O. (eds.) Numerical Mathematics and Advanced Applications. Proceedings of the 7th European Conference (ENUMATH 2007) held in Graz, 10–14 Sept 2007, pp. 521–528. Springer (2008)

  13. Roos, H.-G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations. Convection-diffusion-reaction and flow problems. Number 24 in SCM. Springer (2008)

  14. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tobiska, L., Winkel, C.: The two-level local projection stabilization as an enriched one-level approach. A one-dimensional study. Int. J. Numer. Anal. Model. 7(3), 520–534 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianhua He.

Additional information

Communicated by K. Urban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, L., Tobiska, L. The two-level local projection stabilization as an enriched one-level approach. Adv Comput Math 36, 503–523 (2012). https://doi.org/10.1007/s10444-011-9188-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-011-9188-1

Keywords

Mathematics Subject Classification (2010)

Navigation