Skip to main content
Log in

Impact of Detergent-Based Decellularization Methods on Porcine Tissues for Heart Valve Engineering

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

To date an optimal decellularization protocol of heart valve leaflets (HVL) and pericardia (PER) with an adequate preservation of the extracellular matrix (ECM) is still lacking. This study compares a 4 day Triton X-100-based protocol with faster SDC-based protocols for the decellularization of cardiac tissues. Decellularized and non-treated HVL and PER were processed for histological, biochemical and mechanical analysis to determine the effect of these agents on the structure, ECM components, and biomechanical properties. Tissues treated with SDC-based protocols still showed nuclear material, whereas tissues treated with Triton X-100 1% + ENZ ± TRYP were completely cell free. For both decellularized tissues, an almost complete washout of glycosaminoglycans, a reduction of soluble collagen and an alteration of the surface ultrastructure was observed. Interestingly, only the elastic fibers of pericardial tissue were affected and this tissue had a decreased maximum load. This study showed that both detergents had a similar impact on the ECM. However, Triton X-100 1% +DNase/RNase (ENZ) ± Trypsin (TRYP) is the only protocol that generated completely cell free bioscaffolds. Also, our study clearly demonstrated that the decellularization agents have more impact on pericardial tissues than on heart valve leaflets. Thus, for the purpose of tissue engineering of heart valves, it is advisable to use valvular rather than pericardial matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Al-Atassi, T., H. Toeg, and M. Ruel. Should we anticoagulate after bioprosthetic aortic valve replacement? Expert. Rev. Cardiovasc. Ther. 11:1649–1657, 2013.

    Article  CAS  PubMed  Google Scholar 

  2. Arenas-Herrera, J. E., I. K. Ko, A. Atala, and J. J. Yoo. Decellularization for whole organ bioengineering. Biomed. Mater. 8:014106, 2013.

    Article  CAS  PubMed  Google Scholar 

  3. Bader, A., T. Schilling, O. E. Teebken, G. Brandes, T. Herden, G. Steinhoff, and A. Haverich. Tissue engineering of heart valves–human endothelial cell seeding of detergent acellularized porcine valves. Eur. J. Cardiothorac. Surg. 14:279–284, 1998.

    Article  CAS  PubMed  Google Scholar 

  4. Badylak, S. F. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl. Immunol. 12:367–377, 2004.

    Article  CAS  PubMed  Google Scholar 

  5. Badylak, S. F. Decellularized allogeneic and xenogeneic tissue as a bioscaffold for regenerative medicine: factors that influence the host response. Ann. Biomed. Eng. 42:1517–1527, 2014.

    Article  PubMed  Google Scholar 

  6. Bloch, O., W. Erdbrugger, W. Volker, A. Schenk, S. Posner, W. Konertz, and P. M. Dohmen. Extracellular matrix in deoxycholic acid decellularized aortic heart valves. Med. Sci. Monit. 18:BR487–BR492, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Booth, C., S. A. Korossis, H. E. Wilcox, K. G. Watterson, J. N. Kearney, J. Fisher, and E. Ingham. Tissue engineering of cardiac valve prostheses I: development and histological characterization of an acellular porcine scaffold. J. Heart Valve Dis. 11:457–462, 2002.

    PubMed  Google Scholar 

  8. Brown, B. N., and S. F. Badylak. Extracellular matrix as an inductive scaffold for functional tissue reconstruction. Transl. Res. 163:268–285, 2014.

    Article  CAS  PubMed  Google Scholar 

  9. Carriel, V. S., J. Aneiros-Fernandez, S. Arias-Santiago, I. J. Garzon, M. Alaminos, and A. Campos. A novel histochemical method for a simultaneous staining of melanin and collagen fibers. J. Histochem. Cytochem. 59:270–277, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cebotari, S., I. Tudorache, T. Jaekel, A. Hilfiker, S. Dorfman, W. Ternes, A. Haverich, and A. Lichtenberg. Detergent decellularization of heart valves for tissue engineering: toxicological effects of residual detergents on human endothelial cells. Artif. Organs 34:206–210, 2010.

    Article  PubMed  Google Scholar 

  11. Courtman, D. W., C. A. Pereira, V. Kashef, D. McComb, J. M. Lee, and G. J. Wilson. Development of a pericardial acellular matrix biomaterial: biochemical and mechanical effects of cell extraction. J. Biomed. Mater. Res. 28:655–666, 1994.

    Article  CAS  PubMed  Google Scholar 

  12. Crapo, P. M., T. W. Gilbert, and S. F. Badylak. An overview of tissue and whole organ decellularization processes. Biomaterials 32:3233–3243, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dohmen, P. M., F. da Costa, S. V. Lopes, R. Vilani, O. Bloch, and W. Konertz. Successful implantation of a decellularized equine pericardial patch into the systemic circulation. Med. Sci. Monit. Basic Res. 20:1–8, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dohmen, P. M., A. Lembcke, H. Hotz, D. Kivelitz, and W. F. Konertz. Ross operation with a tissue-engineered heart valve. Ann. Thorac. Surg. 74:1438–1442, 2002.

    Article  PubMed  Google Scholar 

  15. Dohmen, P. M., S. Ozaki, R. Nitsch, J. Yperman, W. Flameng, and W. Konertz. A tissue engineered heart valve implanted in a juvenile sheep model. Med. Sci. Monit. 9:BR97–BR104, 2003.

    PubMed  Google Scholar 

  16. Dong, J., Y. Li, and X. Mo. The study of a new detergent (octyl-glucopyranoside) for decellularizing porcine pericardium as tissue engineering scaffold. J. Surg. Res. 183:56–67, 2013.

    Article  CAS  PubMed  Google Scholar 

  17. Erdbrugger, W., W. Konertz, P. M. Dohmen, S. Posner, H. Ellerbrok, O. E. Brodde, H. Robenek, D. Modersohn, A. Pruss, S. Holinski, M. Stein-Konertz, and G. Pauli. Decellularized xenogenic heart valves reveal remodeling and growth potential in vivo. Tissue Eng. 12:2059–2068, 2006.

    Article  PubMed  Google Scholar 

  18. Gilbert, T. W. Strategies for tissue and organ decellularization. J. Cell. Biochem. 113:2217–2222, 2012.

    Article  CAS  PubMed  Google Scholar 

  19. Gilbert, T. W., T. L. Sellaro, and S. F. Badylak. Decellularization of tissues and organs. Biomaterials 27:3675–3683, 2006.

    CAS  PubMed  Google Scholar 

  20. Gilpin, S. E., J. P. Guyette, G. Gonzalez, X. Ren, J. M. Asara, D. J. Mathisen, J. P. Vacanti, and H. C. Ott. Perfusion decellularization of human and porcine lungs: bringing the matrix to clinical scale. J. Heart Lung Transplant. 33:298–308, 2014.

    Article  PubMed  Google Scholar 

  21. Go, A. S., D. Mozaffarian, V. L. Roger, E. J. Benjamin, J. D. Berry, M. J. Blaha, S. Dai, E. S. Ford, C. S. Fox, S. Franco, H. J. Fullerton, C. Gillespie, S. M. Hailpern, J. A. Heit, V. J. Howard, M. D. Huffman, S. E. Judd, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, R. H. Mackey, D. J. Magid, G. M. Marcus, A. Marelli, D. B. Matchar, D. K. McGuire, E. R. Mohler, 3rd, C. S. Moy, M. E. Mussolino, R. W. Neumar, G. Nichol, D. K. Pandey, N. P. Paynter, M. J. Reeves, P. D. Sorlie, J. Stein, A. Towfighi, T. N. Turan, S. S. Virani, N. D. Wong, D. Woo, M. B. Turner, and C. American. Heart Association Statistics and S. Stroke Statistics. Heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation 129:e28–e292, 2014.

    Article  PubMed  Google Scholar 

  22. Grauss, R. W., M. G. Hazekamp, F. Oppenhuizen, C. J. van Munsteren, A. C. Gittenberger-de Groot, and M. C. DeRuiter. Histological evaluation of decellularised porcine aortic valves: matrix changes due to different decellularisation methods. Eur. J. Cardiothorac. Surg. 27:566–571, 2005.

    Article  PubMed  Google Scholar 

  23. Iung, B., G. Baron, P. Tornos, C. Gohlke-Barwolf, E. G. Butchart, and A. Vahanian. Valvular heart disease in the community: a European experience. Curr. Probl. Cardiol. 32:609–661, 2007.

    Article  PubMed  Google Scholar 

  24. Kasimir, M. T., E. Rieder, G. Seebacher, G. Silberhumer, E. Wolner, G. Weigel, and P. Simon. Comparison of different decellularization procedures of porcine heart valves. Int. J. Artif. Organs 26:421–427, 2003.

    CAS  PubMed  Google Scholar 

  25. Kasimir, M. T., G. Weigel, J. Sharma, E. Rieder, G. Seebacher, E. Wolner, and P. Simon. The decellularized porcine heart valve matrix in tissue engineering: platelet adhesion and activation. Thromb. Haemost. 94:562–567, 2005.

    CAS  PubMed  Google Scholar 

  26. Lam, M. T., A. Nauta, N. P. Meyer, J. C. Wu, and M. T. Longaker. Effective delivery of stem cells using an extracellular matrix patch results in increased cell survival and proliferation and reduced scarring in skin wound healing. Tissue Eng. Part A 19:738–747, 2013.

    Article  CAS  PubMed  Google Scholar 

  27. Lee, T. C., R. J. Midura, V. C. Hascall, and I. Vesely. The effect of elastin damage on the mechanics of the aortic valve. J. Biomech. 34:203–210, 2001.

    Article  CAS  PubMed  Google Scholar 

  28. Liao, J., E. M. Joyce, and M. S. Sacks. Effects of decellularization on the mechanical and structural properties of the porcine aortic valve leaflet. Biomaterials 29:1065–1074, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maganti, K., V. H. Rigolin, M. E. Sarano, and R. O. Bonow. Valvular heart disease: diagnosis and management. Mayo Clin. Proc. 85:483–500, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Manji, R. A., B. Ekser, A. H. Menkis, and D. K. Cooper. Bioprosthetic heart valves of the future. Xenotransplantation 21:1–10, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mendoza-Novelo, B., E. E. Avila, J. V. Cauich-Rodriguez, E. Jorge-Herrero, F. J. Rojo, G. V. Guinea, and J. L. Mata-Mata. Decellularization of pericardial tissue and its impact on tensile viscoelasticity and glycosaminoglycan content. Acta Biomater. 7:1241–1248, 2011.

    Article  CAS  PubMed  Google Scholar 

  32. Mohammadi, H., and K. Mequanint. Prosthetic aortic heart valves: modeling and design. Med. Eng. Phys. 33:131–147, 2011.

    Article  PubMed  Google Scholar 

  33. Moroni, F., and T. Mirabella. Decellularized matrices for cardiovascular tissue engineering. Am. J. Stem Cells 3:1–20, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Nkomo, V. T., J. M. Gardin, T. N. Skelton, J. S. Gottdiener, C. G. Scott, and M. Enriquez-Sarano. Burden of valvular heart diseases: a population-based study. Lancet 368:1005–1011, 2006.

    Article  PubMed  Google Scholar 

  35. Oliveira, A. C., I. Garzon, A. M. Ionescu, V. Carriel, L. Cardona Jde, M. Gonzalez-Andrades, M. Perez Mdel, M. Alaminos, and A. Campos. Evaluation of small intestine grafts decellularization methods for corneal tissue engineering. PLoS One 8:e66538, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Papalamprou, A. and L. G. Griffiths. Cardiac extracellular matrix scaffold generated using sarcomeric disassembly and antigen removal. Ann Biomed Eng, 2015

  37. Park, C. S., S. S. Oh, Y. E. Kim, S. Y. Choi, H. G. Lim, H. Ahn, and Y. J. Kim. Anti-alpha-Gal antibody response following xenogeneic heart valve implantation in adults. J. Heart Valve Dis. 22:222–229, 2013.

    PubMed  Google Scholar 

  38. Ragaert, K., F. De Somer, P. Somers, I. De Baere, L. Cardon, and J. Degrieck. Flexural mechanical properties of porcine aortic heart valve leaflets. J. Mech. Behav. Biomed. Mater. 13:78–84, 2012.

    Article  PubMed  Google Scholar 

  39. Rieder, E., G. Seebacher, M. T. Kasimir, E. Eichmair, B. Winter, B. Dekan, E. Wolner, P. Simon, and G. Weigel. Tissue engineering of heart valves: decellularized porcine and human valve scaffolds differ importantly in residual potential to attract monocytic cells. Circulation 111:2792–2797, 2005.

    Article  PubMed  Google Scholar 

  40. Schenke-Layland, K., O. Vasilevski, F. Opitz, K. Konig, I. Riemann, K. J. Halbhuber, T. Wahlers, and U. A. Stock. Impact of decellularization of xenogeneic tissue on extracellular matrix integrity for tissue engineering of heart valves. J. Struct. Biol. 143:201–208, 2003.

    Article  CAS  PubMed  Google Scholar 

  41. Seddon, A. M., P. Curnow, and P. J. Booth. Membrane proteins, lipids and detergents: not just a soap opera. Biochim. Biophys. Acta 1666:105–117, 2004.

    Article  CAS  PubMed  Google Scholar 

  42. Simon, P., M. T. Kasimir, G. Seebacher, G. Weigel, R. Ullrich, U. Salzer-Muhar, E. Rieder, and E. Wolner. Early failure of the tissue engineered porcine heart valve SYNERGRAFT in pediatric patients. Eur. J. Cardiothorac. Surg. 23:1002–1006, 2003; (discussion 1006).

    Article  CAS  PubMed  Google Scholar 

  43. Somers, P., A. Roosens, F. De Somer, M. Cornelissen, and G. Van Nooten. Non-cytotoxic crosslinkers for heart valve tissue engineering. J. Heart Valve Dis. 24:92–100, 2015.

    PubMed  Google Scholar 

  44. Vashi, A. V., J. F. White, K. M. McLean, W. M. Neethling, D. I. Rhodes, J. A. Ramshaw, and J. A. Werkmeister. Evaluation of an established pericardium patch for delivery of mesenchymal stem cells to cardiac tissue. J Biomed Mater Res A. 2014. doi:10.1002/jbma.35335.

    Google Scholar 

  45. Vesely, I. Heart valve tissue engineering. Circ. Res. 97:743–755, 2005.

    Article  CAS  PubMed  Google Scholar 

  46. Wainwright, J. M., C. A. Czajka, U. B. Patel, D. O. Freytes, K. Tobita, T. W. Gilbert, and S. F. Badylak. Preparation of cardiac extracellular matrix from an intact porcine heart. Tissue Eng. Part C Methods 16:525–532, 2010.

    Article  CAS  PubMed  Google Scholar 

  47. Yacoub, M. H., and J. J. Takkenberg. Will heart valve tissue engineering change the world? Nat Clin Pract Cardiovasc Med 2:60–61, 2005.

    Article  CAS  PubMed  Google Scholar 

  48. Yang, M., C. Z. Chen, X. N. Wang, Y. B. Zhu, and Y. J. Gu. Favorable effects of the detergent and enzyme extraction method for preparing decellularized bovine pericardium scaffold for tissue engineered heart valves. J. Biomed. Mater. Res. B Appl. Biomater. 91:354–361, 2009.

    Article  PubMed  Google Scholar 

  49. Yu, B. T., W. T. Li, B. Q. Song, and Y. L. Wu. Comparative study of the Triton X-100-sodium deoxycholate method and detergent-enzymatic digestion method for decellularization of porcine aortic valves. Eur Rev Med Pharmacol Sci 17:2179–2184, 2013.

    PubMed  Google Scholar 

  50. Zhou, J., O. Fritze, M. Schleicher, H. P. Wendel, K. Schenke-Layland, C. Harasztosi, S. Hu, and U. A. Stock. Impact of heart valve decellularization on 3-D ultrastructure, immunogenicity and thrombogenicity. Biomaterials 31:2549–2554, 2010.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Special Research Fund Ghent University (BOF), B/13488/01.

Conflict of interest

No competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annelies Roosens.

Additional information

Associate Editor Smadar Cohen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roosens, A., Somers, P., De Somer, F. et al. Impact of Detergent-Based Decellularization Methods on Porcine Tissues for Heart Valve Engineering. Ann Biomed Eng 44, 2827–2839 (2016). https://doi.org/10.1007/s10439-016-1555-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1555-0

Keywords

Navigation