Skip to main content
Log in

Measurement of Passive Skeletal Muscle Mechanical Properties In Vivo: Recent Progress, Clinical Applications, and Remaining Challenges

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The ability to measure and quantify the properties of skeletal muscle in vivo as a method for understanding its complex physiological and pathophysiological behavior is important in numerous clinical settings, including rehabilitation. However, this remains a challenge to date due to the lack of a “gold standard” technique. Instead, there are a myriad of measuring techniques each with its own set of pros and cons. This review discusses the current state-of-the-art in elastography imaging techniques, i.e., ultrasound and magnetic resonance elastography, as applied to skeletal muscle, and briefly reviews other methods of measuring muscle mechanical behavior in vivo. While in vivo muscle viscoelastic properties can be measured, these techniques are largely limited to static or quasistatic measurements. Emerging elastography techniques are able to quantify muscle anisotropy and large deformation effects on stiffness, but, validation and optimization of these newer techniques is required. The development of reliable values for the mechanical properties of muscle across the population using these techniques are required to enable them to become more useful in rehabilitation and other clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Afdhal, N. H. Fibroscan (transient elastography) for the measurement of liver fibrosis. Gastroenterol. Hepatol. 8:605–607, 2012.

    Google Scholar 

  2. Alhusaini, A. A. A., J. Crosbie, R. B. Shepherd, C. M. Dean, and A. Scheinberg. No change in calf muscle passive stiffness after botulinum toxin injection in children with cerebral palsy. Dev. Med. Child Neurol. 53:553–558, 2011.

    Article  PubMed  Google Scholar 

  3. Basford, J. R., T. R. Jenkyn, K. N. An, R. L. Ehman, G. Heers, and K. R. Kaufman. Evaluation of healthy and diseased muscle with magnetic resonance elastography. Arch. Phys. Med. Rehabil. 83:1530–1536, 2002.

    Article  PubMed  Google Scholar 

  4. Bensamoun, S. F., S. I. Ringleb, Q. S. Chen, R. L. Ehman, K. N. An, and M. Brennan. Thigh muscle stiffness assessed with magnetic resonance elastography in hyperthyroid patients before and after medical treatment. J. Magn. Reson. Imaging 26:708–713, 2007.

    Article  PubMed  Google Scholar 

  5. Bensamoun, S. F., S. I. Ringleb, L. Littrell, Q. Chen, M. Brennan, R. L. Ehman, and K. N. An. Determination of thigh muscle stiffness using magnetic resonance elastography. J. Magn. Reson. Imaging 23:242–247, 2006.

    Article  PubMed  Google Scholar 

  6. Botar-Jid, C., L. Damian, S. M. Dudea, D. Vasilescu, S. Rednic, and R. Badea. The contribution of ultrasonography and sonoelastography in assessment of myositis. Med. Ultrason. 12:120–126, 2010.

    PubMed  Google Scholar 

  7. Brodie, T. G. The extensibility of muscle. J. Anat. Physiol. 29:367, 1895.

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Brown, E. C., S. Cheng, D. K. McKenzie, J. E. Butler, S. C. Gandevia, and L. E. Bilston. Respiratory movement of upper airway tissue in obstructive sleep apnea. Sleep 36:1069–1076, 2013.

    PubMed Central  PubMed  Google Scholar 

  9. Brown, E. C., S. Cheng, D. K. McKenzie, J. E. Butler, S. C. Gandevia, and L. E. Bilston. Tongue stiffness is lower in patients with obstructive sleep apnea during wakefulness compared with matched control subjects. Sleep 2014. (in press).

  10. Castéra, L., J. Vergniol, J. Foucher, B. Le Bail, E. Chanteloup, M. Haaser, et al. Prospective comparison of transient elastography, fibrotest, apri, and liver biopsy for the assessment of fibrosis in chronic hepatitis C. Gastroenterology 128:343–350, 2005.

    Article  PubMed  Google Scholar 

  11. Cheng, S., J. E. Butler, S. C. Gandevia, and L. E. Bilston. Movement of the tongue during normal breathing in awake healthy humans. J. Physiol. 586:4283–4294, 2008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Chuang, L.-L., C.-Y. Wu, and K.-C. Lin. Reliability, validity, and responsiveness of myotonometric measurement of muscle tone, elasticity, and stiffness in patients with stroke. Arch. Phys. Med. Rehabil. 93:532–540, 2012.

    Article  PubMed  Google Scholar 

  13. Clarke, E. C., S. Cheng, M. Green, R. Sinkus, and L. E. Bilston. Using static preload with magnetic resonance elastography to estimate large strain viscoelastic properties of bovine liver. J. Biomech. 44:2461–2465, 2011.

    Article  CAS  PubMed  Google Scholar 

  14. Dalkilic, I., and L. M. Kunkel. Muscular dystrophies: genes to pathogenesis. Curr. Opin. Genet. Dev. 13:231–238, 2003.

    Article  CAS  PubMed  Google Scholar 

  15. Diong, J., L. A. Harvey, L. K. Kwah, J. L. Clarke, L. E. Bilston, S. C. Gandevia, and R. D. Herbert. Gastrocnemius muscle contracture after spinal cord injury: a longitudinal study. Am. J. Phys. Med. Rehabil. 92:565–574, 2013.

    Article  PubMed  Google Scholar 

  16. Diong, J. H., R. D. Herbert, L. A. Harvey, L. K. Kwah, J. L. Clarke, P. D. Hoang, et al. Passive mechanical properties of the gastrocnemius after spinal cord injury. Muscle Nerve 46:237–245, 2012.

    Article  PubMed  Google Scholar 

  17. Drakonaki, E. E., and G. M. Allen. Magnetic resonance imaging, ultrasound and real-time ultrasound elastography of the thigh muscles in congenital muscle dystrophy. Skeletal Radiol. 39:391–396, 2010.

    Article  PubMed  Google Scholar 

  18. Drakonaki, E., G. Allen, and D. Wilson. Ultrasound elastography for musculoskeletal applications. Br. J. Radiol. 85:1435–1445, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Friedrich-Rust, M., M. F. Ong, S. Martens, C. Sarrazin, J. Bojunga, S. Zeuzem, and E. Herrmann. Performance of transient elastography for the staging of liver fibrosis: a meta-analysis. Gastroenterology 134(960–974):e968, 2008.

    Google Scholar 

  20. Friedrich-Rust, M., K. Wunder, S. Kriener, F. Sotoudeh, S. Richter, J. Bojunga, et al. Liver fibrosis in viral hepatitis: noninvasive assessment with acoustic radiation force impulse imaging vs. transient elastography 1. Radiology 252:595–604, 2009.

    Article  PubMed  Google Scholar 

  21. Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer, 1993.

    Book  Google Scholar 

  22. Gao, F., T. H. Grant, E. J. Roth, and L.-Q. Zhang. Changes in passive mechanical properties of the gastrocnemius muscle at the muscle fascicle and joint levels in stroke survivors. Arch. Phys. Med. Rehabil. 90:819–826, 2009.

    Article  PubMed  Google Scholar 

  23. Garteiser, P., R. S. Sahebjavaher, L. C. Ter Beek, S. Salcudean, V. Vilgrain, B. E. Van Beers, and R. Sinkus. Rapid acquisition of multifrequency, multislice and multidirectional MR elastography data with a fractionally encoded gradient echo sequence. NMR Biomed. 26:1326–1335, 2013.

    Article  PubMed  Google Scholar 

  24. Gennisson, J. L., C. Cornu, S. Catheline, M. Fink, and P. Portero. Human muscle hardness assessment during incremental isometric contraction using transient elastography. J. Biomech. 38:1543–1550, 2005.

    Article  PubMed  Google Scholar 

  25. Giacomozzi, C., E. D’Ambrogi, S. Cesinaro, V. Macellari, and L. Uccioli. Muscle performance and ankle joint mobility in long-term patients with diabetes. BMC Musculoskelet. Disord. 9:99, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Green, M. A., L. E. Bilston, and R. Sinkus. In vivo brain viscoelastic properties measured by magnetic resonance elastography. NMR Biomed. 21:755–764, 2008.

    Article  PubMed  Google Scholar 

  27. Green, M., G. Geng, E. Qin, R. Sinkus, S. Gandevia, and L. Bilston. Measuring anisotropic muscle stiffness properties using elastography. NMR Biomed. 26:1387–1394, 2013.

    Article  CAS  PubMed  Google Scholar 

  28. Green, M., R. Sinkus, S. Gandevia, R. Herbert, and L. Bilston. Measuring changes in muscle stiffness after eccentric exercise using elastography. NMR Biomed. 25:852–858, 2012.

    Article  CAS  PubMed  Google Scholar 

  29. Grounds, M. D., H. G. Radley, G. S. Lynch, K. Nagaraju, and A. De Luca. Towards developing standard operating procedures for pre-clinical testing in the mdx mouse model of Duchenne Muscular Dystrophy. Neurobiol. Dis. 31:1–19, 2008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Hafer-Macko, C. E., A. S. Ryan, F. M. Ivey, and R. F. Macko. Skeletal muscle changes after hemiparetic stroke and potential beneficial effects of exercise intervention strategies. J. Rehabil. Res. Dev. 45:261–272, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Hamhaber, U., I. Sack, S. Papazoglou, J. Rump, D. Klatt, and J. Braun. Three-dimensional analysis of shear wave propagation observed by in vivo magnetic resonance elastography of the brain. Acta Biomater. 3:127–137, 2007.

    Article  CAS  PubMed  Google Scholar 

  32. Hoang, P., R. Gorman, G. Todd, S. C. Gandevia, and R. Herbert. A new method for measuring passive length–tension properties of human gastrocnemius muscle in vivo. J. Biomech. 38:1333–1341, 2005.

    Article  CAS  PubMed  Google Scholar 

  33. Huwart, L., C. Sempoux, N. Salameh, J. Jamart, L. Annet, R. Sinkus, et al. Liver fibrosis: noninvasive assessment with MR elastography vs. aspartate aminotransferase-to-platelet ratio index. Radiology 245:458–466, 2007.

    Article  PubMed  Google Scholar 

  34. Huwart, L., C. Sempoux, E. Vicaut, N. Salameh, L. Annet, E. Danse, et al. Magnetic resonance elastography for the noninvasive staging of liver fibrosis. Gastroenterology 135:32–40, 2008.

    Article  PubMed  Google Scholar 

  35. Kawakami, Y., H. Kanehisa, and T. Fukunaga. The relationship between passive ankle plantar flexion joint torque and gastrocnemius muscle and achilles tendon stiffness: implications for flexibility. J. Orthop. Sports Phys. Therapy 38:269–276, 2008.

    Article  Google Scholar 

  36. Klatt, D., C. Friedrich, Y. Korth, R. Vogt, J. Braun, and I. Sack. Viscoelastic properties of liver measured by oscillatory rheometry and multifrequency magnetic resonance elastography. Biorheology 47:133–141, 2010.

    PubMed  Google Scholar 

  37. Krouskop, T. A., T. M. Wheeler, F. Kallel, B. S. Garra, and T. Hall. Elastic moduli of breast and prostate tissues under compression. Ultrason. Imaging 20:260–274, 1998.

    Article  CAS  PubMed  Google Scholar 

  38. Kwah, L. K., R. D. Herbert, L. A. Harvey, J. Diong, J. L. Clarke, J. H. Martin, et al. Passive mechanical properties of gastrocnemius muscles of people with ankle contracture after stroke. Arch. Phys. Med. Rehab. 93:1185–1190, 2012.

    Article  Google Scholar 

  39. Kwon, D. R., G. Y. Park, and J. G. Kwon. The change of intrinsic stiffness in gastrocnemius after intensive rehabilitation with botulinum toxin a injection in spastic diplegic cerebral palsy. Ann. Rehabil. Med. 36:400–403, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Kwon, D. R., G. Y. Park, S. U. Lee, and I. Chung. Spastic cerebral palsy in children: dynamic sonoelastographic findings of medial gastrocnemius. Radiology 263:794–801, 2012.

    Article  PubMed  Google Scholar 

  41. Leonard, C. T., W. P. Deshner, J. W. Romo, E. S. Suoja, S. C. Fehrer, and E. L. Mikhailenok. Myotonometer intra-and interrater reliabilities. Arch. Phys. Med. Rehabil. 84:928–932, 2003.

    Article  PubMed  Google Scholar 

  42. Leonard, C. T., J. U. Stephens, and S. L. Stroppel. Assessing the spastic condition of individuals with upper motoneuron involvement: validity of the myotonometer. Arch. Phys. Med. Rehabil. 82:1416–1420, 2001.

    Article  CAS  PubMed  Google Scholar 

  43. Lieber, R. L., and S. C. Bodine-Fowler. Skeletal muscle mechanics: implications for rehabilitation. Phys. Ther. 73:844–856, 1993.

    CAS  PubMed  Google Scholar 

  44. Lieber, R. L., S. Steinman, I. A. Barash, and H. Chambers. Structural and functional changes in spastic skeletal muscle. Muscle Nerve 29:615–627, 2004.

    Article  PubMed  Google Scholar 

  45. Linder-Ganz, E., and A. Gefen. Mechanical compression-induced pressure sores in rat hindlimb: muscle stiffness, histology, and computational models. J. Appl. Physiol. 96:2034–2049, 2004.

    Article  CAS  PubMed  Google Scholar 

  46. Lv, F., J. Tang, Y. Luo, Y. Ban, R. Wu, J. Tian, et al. Muscle crush injury of extremity: quantitative elastography with supersonic shear imaging. Ultrasound Med. Biol. 38:795–802, 2012.

    Article  PubMed  Google Scholar 

  47. Maïsetti, O., F. Hug, K. Bouillard, and A. Nordez. Characterization of passive elastic properties of the human medial gastrocnemius muscle belly using supersonic shear imaging. J. Biomech. 45:978–984, 2012.

    Article  PubMed  Google Scholar 

  48. Marusiak, J., A. Jaskólska, S. Budrewicz, M. Koszewicz, and A. Jaskólski. Increased muscle belly and tendon stiffness in patients with Parkinson’s disease, as measured by myotonometry. Mov. Disord. 26:2119–2122, 2011.

    Article  PubMed  Google Scholar 

  49. McCracken, P. J., A. Manduca, J. Felmlee, and R. L. Ehman. Mechanical transient-based magnetic resonance elastography. Magn. Reson. Med. 53:628–639, 2005.

    Article  PubMed  Google Scholar 

  50. McCullough, M. B., Z. J. Domire, A. M. Reed, S. Amin, S. R. Ytterberg, Q. Chen, and K. N. An. Evaluation of muscles affected by myositis using magnetic resonance elastography. Muscle Nerve 43:585–590, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Mezzanotte, W. S., D. J. Tangel, and D. P. White. Waking genioglossal electromyogram in sleep apnea patients vs. normal controls (a neuromuscular compensatory mechanism). J. Clin. Investig. 89:1571–1579, 1992.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Muraki, T., Z. J. Domire, M. B. McCullough, Q. Chen, and K.-N. An. Measurement of stiffness changes in immobilized muscle using magnetic resonance elastography. Clin. Biomech. 25:499–503, 2010.

    Article  Google Scholar 

  53. Muthupillai, R., and R. L. Ehman. Magnetic resonance elastography. Nat. Med. 2:601–603, 1996.

    Article  CAS  PubMed  Google Scholar 

  54. Nightingale, K., M. S. Soo, R. Nightingale, and G. Trahey. Acoustic radiation force impulse imaging. In vivo demonstration of clinical feasibility. Ultrasound Med. Biol. 28:227–235, 2002.

    Article  PubMed  Google Scholar 

  55. Niitsu, M., A. Michizaki, A. Endo, H. Takei, and O. Yanagisawa. Muscle hardness measurement by using ultrasound elastography: a feasibility study. Acta Radiol. 52:99–105, 2011.

    Article  PubMed  Google Scholar 

  56. Nordez, A., J. Gennisson, P. Casari, S. Catheline, and C. Cornu. Characterization of muscle belly elastic properties during passive stretching using transient elastography. J. Biomech. 41:2305–2311, 2008.

    Article  CAS  PubMed  Google Scholar 

  57. Nordez, A., and F. Hug. Muscle shear elastic modulus measured using supersonic shear imaging is highly related to muscle activity level. J. Appl. Physiol. 108:1389–1394, 2010.

    Article  PubMed  Google Scholar 

  58. OpenStax College. 2014. Anatomy & Physiology. OpenStax CNX, Jul 31, 2014. http://cnx.org/contents/14fb4ad7-39a1-4eee-ab6e-3ef2482e3e22@6.27@6.27. Accessed 15 Sept 2014

  59. Osman, N. F., W. S. Kerwin, E. R. McVeigh, and J. L. Prince. Cardiac motion tracking using cine harmonic phase (Harp) magnetic resonance imaging. Magn. Reson. Med. 42:1048–1060, 1999.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Pastoret, C., and A. Sebille. Mdx mice show progressive weakness and muscle deterioration with age. J. Neurol. Sci. 129:97–105, 1995.

    Article  CAS  PubMed  Google Scholar 

  61. Proske, U., D. L. Morgan, and J. E. Gregory. Thixotropy in skeletal muscle and in muscle spindles: a review. Prog. Neurobiol. 41:705–721, 1993.

    Article  CAS  PubMed  Google Scholar 

  62. Purslow, P. P. Muscle fascia and force transmission. J. Bodyw. Mov. Ther. 14:411–417, 2010.

    Article  PubMed  Google Scholar 

  63. Qin, E. C., L. Juge, S. A. Lambert, V. Paradis, R. Sinkus, and L. E. Bilston. In vivo anisotropic mechanical properties of dystrophic skeletal muscles measured by MR elastography with diffusion–tensor imaging: the mdx mouse model of muscular dystrophy. Radiology 2014. doi:10.1148/radiol.14132661.

  64. Qin, E. C., R. Sinkus, G. Geng, S. Cheng, M. Green, C. D. Rae, and L. E. Bilston. Combining MR elastography and diffusion tensor imaging for the assessment of anisotropic mechanical properties: a phantom study. J. Magn. Reson. Imaging 37:217–226, 2013.

    Article  PubMed  Google Scholar 

  65. Rydahl, S. J., and B. J. Brouwer. Ankle stiffness and tissue compliance in stroke survivors: a validation of myotonometer measurements. Arch. Phys. Med. Rehabil. 85:1631–1637, 2004.

    Article  PubMed  Google Scholar 

  66. Sandrin, L., M. Tanter, J. L. Gennisson, S. Catheline, and M. Fink. Shear elasticity probe for soft tissues with 1-D transient elastography. Trans. Ultrasonics Ferroelectr. Freq. Control IEEE 49:436–446, 2002.

    Article  Google Scholar 

  67. Shinohara, M., K. Sabra, J. L. Gennisson, M. Fink, and M. Tanter. Real-time visualization of muscle stiffness distribution with ultrasound shear wave imaging during muscle contraction. Muscle Nerve 42:438–441, 2010.

    Article  PubMed  Google Scholar 

  68. Sinkus, R., M. Tanter, S. Catheline, J. Lorenzen, C. Kuhl, E. Sondermann, and M. Fink. Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography. Magn. Reson. Med. 53:372–387, 2005.

    Article  CAS  PubMed  Google Scholar 

  69. Talwalkar, J. A., M. Yin, J. L. Fidler, S. O. Sanderson, P. S. Kamath, and R. L. Ehman. Magnetic resonance imaging of hepatic fibrosis: emerging clinical applications. Hepatology 47:332–342, 2008.

    Article  PubMed  Google Scholar 

  70. Tian, M., R. D. Herbert, P. Hoang, S. C. Gandevia, and L. E. Bilston. Myofascial force transmission between the human soleus and gastrocnemius muscles during passive knee motion. J. Appl. Physiol. 113:517–523, 2012.

    Article  PubMed  Google Scholar 

  71. Tian, M., P. D. Hoang, S. C. Gandevia, L. E. Bilston, and R. D. Herbert. Stress relaxation of human ankles is only minimally affected by knee and ankle angle. J. Biomech. 43:990–993, 2010.

    Article  PubMed  Google Scholar 

  72. Torres, L., and L. Duchen. The mutant mdx: inherited myopathy in the mouse morphological studies of nerves, muscles and end-plates. Brain 110:269–299, 1987.

    Article  PubMed  Google Scholar 

  73. Vain, A. Estimation of the Functional State of Skeletal Muscle. In: Control of Ambulation Using Functional Neuromuscular Stimulation, edited by P. H. Veltink, and H. B. K. Boom. Enschede: University of Twente Press, 1995, pp. 51–55.

    Google Scholar 

  74. Van Houten, E. E. W., M. M. Doyley, F. E. Kennedy, J. B. Weaver, and K. D. Paulsen. Initial in vivo experience with steady-state subzone-based MR elastography of the human breast. J. Magn. Reson. Imaging 17:72–85, 2003.

    Article  PubMed  Google Scholar 

  75. Van Houten, E., J. Weaver, M. Miga, F. Kennedy, and K. Paulsen. Elasticity reconstruction from experimental MR displacement data: initial experience with an overlapping subzone finite element inversion process. Med. Physics. 27:101–107, 2000.

    Article  Google Scholar 

  76. Van Loocke, M., C. G. Lyons, and C. K. Simms. A validated model of passive muscle in compression. J. Biomech. 39:2999–3009, 2006.

    Article  PubMed  Google Scholar 

  77. van Turnhout, M., G. Peters, A. Stekelenburg, and C. Oomens. Passive transverse mechanical properties as a function of temperature of rat skeletal muscle in vitro. Biorheology 42:193–207, 2005.

    PubMed  Google Scholar 

  78. Vasilescu, D., D. Vasilescu, S. Dudea, C. Botar-Jid, S. Sfrângeu, and D. Cosma. Sonoelastography contribution in cerebral palsy spasticity treatment assessment, preliminary report: a systematic review of the literature apropos of seven patients. Med. Ultrason. 12:306–310, 2010.

    PubMed  Google Scholar 

  79. Veldi, M., V. Vasar, T. Hion, A. Vain, and M. Kull. Myotonometry demonstrates changes of lingual musculature in obstructive sleep apnoea. Eur. Arch. Otorhinolaryngol. 259:108–112, 2002.

    Article  PubMed  Google Scholar 

  80. Zerhouni, E. A., D. M. Parish, W. J. Rogers, A. Yang, and E. P. Shapiro. Human heart: tagging with MR imaging–a method for noninvasive assessment of myocardial motion. Radiology 169:59–63, 1988.

    Article  CAS  PubMed  Google Scholar 

  81. Zhijie, Z., K. Cw, L. Wc, and S. Fu. Shearwave ultrasound elastography of thigh muscles: intra- and inter-rater reliability. Ultrasound Med. Biol. 37:S141–S142, 2011.

    Article  Google Scholar 

Download references

Acknowledgments

Lynne Bilston is supported by an NHMRC senior research fellowship. The authors have no competing interests to declare. The authors would like to thank Professor Rob Herbert for his insightful comments on a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynne E. Bilston.

Additional information

Associate Editor Amit Gefen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilston, L.E., Tan, K. Measurement of Passive Skeletal Muscle Mechanical Properties In Vivo: Recent Progress, Clinical Applications, and Remaining Challenges. Ann Biomed Eng 43, 261–273 (2015). https://doi.org/10.1007/s10439-014-1186-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1186-2

Keywords

Navigation