Skip to main content

Advertisement

Log in

Control of Growth Factor Networks by Heparan Sulfate Proteoglycans

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Growth factor binding to transmembrane protein receptors is generally understood to initiate cell signaling. Receptor binding of heparin-binding growth factors (HB-GFs), such as fibroblast growth factor-2 (FGF-2), is regulated by interactions with heparan sulfate proteoglycans. While there is some specificity for binding to heparan sulfate, overlap in sites for different growth factors may allow for cross regulation. Here we demonstrate, using experiments and computer simulations, that the HB-GFs FGF-2 and heparin-binding EGF-like growth factor (HB-EGF) can cross regulate receptor binding of the other despite having unique receptors. The ability of HSPG to stabilize HB-GF receptor binding is critical for competing growth factors to modulate receptor binding with both enhanced and reduced binding possible depending on this stabilization process. HSPG density and affinity for HB-GF are also critical factors for HB-GF cross regulation. Simulations further reveal that HB-GF can regulate receptor binding of non-HB-GFs such as EGF even when the two proteins share no binding sites when other HB-GF are present within the network. Proliferation studies demonstrate potentiation of HB-EGF-induced growth by FGF-2 indicating that competition networks can alter biological response. Exogenous manipulation of cellular responses to growth factors in complex living systems will require understanding the HSPG-controlled network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8
FIGURE 9
FIGURE 10
FIGURE 11

Similar content being viewed by others

References

  1. Atha D. H., J. C. Lormeau, M. Petitou, R. D. Rosenberg, J. Choay 1987 Contribution of 3-O- and 6-O-sulfated glucosamine residues in the heparin-induced conformational change in antithrombin III. Biochemistry. 26, 6454–6461. doi:10.1021/bi00394a024

    Article  PubMed  CAS  Google Scholar 

  2. Atha D. H., A. W. Stephens, R. D. Rosenberg 1984 Evaluation of critical groups required for the binding of heparin to antithrombin. Proc. Natl. Acad. Sci. U.S.A. 81, 1030–1034. doi:10.1073/pnas.81.4.1030

    Article  PubMed  CAS  Google Scholar 

  3. Bublil E. M., Y. Yarden 2007 The EGF receptor family: spearheading a merger of signaling and therapeutics. Curr. Opin. Cell Biol. 19, 124–134. doi:10.1016/j.ceb.2007.02.008

    Article  PubMed  CAS  Google Scholar 

  4. Capila I., R. J. Linhardt 2002 Heparin–protein interactions. Angew Chem. Int. Ed. Engl. 41, 391–412. doi:10.1002/1521-3773(20020201)41:3<390::AID-ANIE390>3.0.CO;2-B

    Article  PubMed  Google Scholar 

  5. Chu C. L., J. A. Buczek-Thomas, M. A. Nugent 2004 Heparan sulphate proteoglycans modulate fibroblast growth factor-2 binding through a lipid raft-mediated mechanism. Biochem. J. 379, 331–341. doi:10.1042/BJ20031082

    Article  PubMed  CAS  Google Scholar 

  6. Chu C. L., A. L. Goerges, M. A. Nugent 2005 Identification of common and specific growth factor binding sites in heparan sulfate proteoglycans. Biochemistry. 44, 12203–12213. doi:10.1021/bi050241p

    Article  PubMed  CAS  Google Scholar 

  7. Chua C. C., N. Rahimi, K. Forsten-Williams, M. A. Nugent 2004 Heparan sulfate proteoglycans function as receptors for fibroblast growth factor-2 activation of extracellular signal-regulated kinases 1 and 2. Circ. Res. 94, 316–323. doi:10.1161/01.RES.0000112965.70691.AC

    Article  PubMed  CAS  Google Scholar 

  8. Connolly D. T., M. B. Knight, N. K. Harakas, A. J. Wittwer, J. Feder 1986 Determination of the number of endothelial cells in culture using an acid phosphatase assay. Anal. Biochem. 152, 136–140. doi:10.1016/0003-2697(86)90131-4

    Article  PubMed  CAS  Google Scholar 

  9. Conrad H. E. 1998 Heparin-binding proteins. San Diego: Academic Press

    Google Scholar 

  10. Esko J. D., S. B. Selleck 2002 Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 71, 435–471. doi:10.1146/annurev.biochem.71.110601.135458

    Article  PubMed  CAS  Google Scholar 

  11. Eswarakumar V. P., I. Lax, J. Schlessinger 2005 Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 16, 139–149. doi:10.1016/j.cytogfr.2005.01.001

    Article  PubMed  CAS  Google Scholar 

  12. Fannon M., K. E. Forsten, M. A. Nugent 2000 Potentiation and inhibition of bFGF binding by heparin: a model for regulation of cellular response. Biochemistry. 39, 1434–1445. doi:10.1021/bi991895z

    Article  PubMed  CAS  Google Scholar 

  13. Fantl W. J., D. E. Johnson, L. T. Williams 1993 Signalling by receptor tyrosine kinases. Annu. Rev. Biochem. 62, 453–481

    PubMed  CAS  Google Scholar 

  14. Forsten-Williams K., C. C. Chua, M. A. Nugent 2005 The kinetics of FGF-2 binding to heparan sulfate proteoglycans and MAP kinase signaling. J. Theor. Biol. 233, 483–499. doi:10.1016/j.jtbi.2004.10.020

    Article  PubMed  CAS  Google Scholar 

  15. Gallagher J. T. 2001 Heparan sulfate: growth control with a restricted sequence menu. J. Clin. Invest. 108, 357–361

    PubMed  CAS  Google Scholar 

  16. Gavutis M., E. Jaks, P. Lamken, J. Piehler 2006 Determination of the two-dimensional interaction rate constants of a cytokine receptor complex. Biophys. J. 90, 3345–3355. doi:10.1529/biophysj.105.072546

    Article  PubMed  CAS  Google Scholar 

  17. Gitay-Goren H., S. Soker, I. Vlodavsky, G. Neufeld 1992 The binding of vascular endothelial growth factor to its receptors is dependent on cell surface-associated heparin-like molecules. J. Biol. Chem. 267, 6093–6098

    PubMed  CAS  Google Scholar 

  18. Goerges A. L., M. A. Nugent 2003 Regulation of vascular endothelial growth factor binding and activity by extracellular pH. J. Biol. Chem. 278, 19518–19525. doi:10.1074/jbc.M211208200

    Article  PubMed  CAS  Google Scholar 

  19. Goerges A. L., M. A. Nugent 2004 pH regulates vascular endothelial growth factor binding to fibronectin: a mechanism for control of extracellular matrix storage and release. J. Biol. Chem. 279, 2307–2315. doi:10.1074/jbc.M308482200

    Article  PubMed  CAS  Google Scholar 

  20. Gopalakrishnan M., K. Forsten-Williams, U. C. Tauber 2004 Ligand-induced coupling versus receptor pre-association: cellular automaton simulations of FGF-2 binding. J. Theo. Biol. 227, 239–251. doi:10.1016/j.jtbi.2003.11.004

    Article  CAS  Google Scholar 

  21. Haugh J. M., A. C. Huang, H. S. Wiley, A. Wells, D. A. Lauffenburger 1999 Internalized epidermal growth factor receptors participate in the activation of p21(ras) in fibroblasts. J. Biol. Chem. 274, 34350–34360. doi:10.1074/jbc.274.48.34350

    Article  PubMed  CAS  Google Scholar 

  22. Hendriks B. S., L. K. Opresko, H. S. Wiley, D. Lauffenburger 2003 Quantitative analysis of HER2-mediated effects on HER2 and epidermal growth factor receptor endocytosis: distribution of homo- and heterodimers depends on relative HER2 levels. J. Biol. Chem. 278, 23343–23351. doi:10.1074/jbc.M300477200

    Article  PubMed  CAS  Google Scholar 

  23. Higashiyama S., J. A. Abraham, M. Klagsbrun 1993 Heparin-binding EGF-like growth factor stimulation of smooth muscle cell migration: dependence on interactions with cell surface heparan sulfate. J. Cell Biol. 122, 933–940. doi:10.1083/jcb.122.4.933

    Article  PubMed  CAS  Google Scholar 

  24. Jones J. T., R. W. Akita, M. X. Sliwkowski 1999 Binding specificities and affinities of egf domains for ErbB receptors. FEBS Let. 447, 227–231. doi:10.1016/S0014-5793(99)00283-5

    Article  CAS  Google Scholar 

  25. Kreuger J., D. Spillmann, J. P. Li, U. Lindahl 2006 Interactions between heparan sulfate and proteins: the concept of specificity. J. Cell Biol. 174, 323–327. doi:10.1083/jcb.200604035

    Article  PubMed  CAS  Google Scholar 

  26. Lemmon M. A., J. Schlessinger 1998 Transmembrane signaling by receptor oligomerization. Methods Mol. Biol. 84, 49–71

    PubMed  CAS  Google Scholar 

  27. Lindahl U., G. Backstrom, L. Thunberg, I. G. Leder 1980 Evidence for a 3-O-sulfated d-glucosamine residue in the antithrombin-binding sequence of heparin. Proc. Natl. Acad. Sci. U.S.A. 77, 6551–6555. doi:10.1073/pnas.77.11.6551

    Article  PubMed  CAS  Google Scholar 

  28. Mac Grabhann, F., and A.S. Popel. Dimerization of VEGF receptors and implications for signal transduction: a computational study. Biophys. Chem. 128:125–139, 2007

    Article  Google Scholar 

  29. Moscatelli D. 1987 High and low affinity binding sites for basic fibroblast growth factor on cultured cells: absence of a role for low affinity binding in the stimulation of plasminogen activator production by bovine capillary endothelial cells. J. Cell. Physiol. 131, 123–130. doi:10.1002/jcp.1041310118

    Article  PubMed  CAS  Google Scholar 

  30. Nugent M. A. 2000 Heparin sequencing brings structure to the function of complex oligosaccharides. Proc. Natl. Acad. Sci. U.S.A. 97, 10301–10303. doi:10.1073/pnas.97.19.10301

    Article  PubMed  CAS  Google Scholar 

  31. Nugent M. A., E. R. Edelman 1992 Kinetics of basic fibroblast growth factor binding to its receptor and heparan sulfate proteoglycan: a mechanism for cooperativity. Biochemistry. 31, 8876–8883. doi:10.1021/bi00152a026

    Article  PubMed  CAS  Google Scholar 

  32. Nugent, M.A., K. Forsten-Williams, M.J. Karnovsky, and E.R. Edelman. Mechanisms of cell growth regulation by heparin and heparan sulfate. In: Chemistry and Biology of Heparin and Heparan Sulfate, edited by H. G. Garg. Elsevier Ltd., 2005, pp. 533–570

  33. Perona R. 2006 Cell signalling: growth factors and tyrosine kinase receptors. Clin. Transl. Oncol. 8, 77–82. doi:10.1007/s12094-006-0162-1

    Article  PubMed  CAS  Google Scholar 

  34. Raab G., M. Klagsbrun 1997 Heparin-binding EGF-like growth factor. Biochim. Biophys. Acta. 1333, F179–199

    PubMed  CAS  Google Scholar 

  35. Shraga-Heled N., O. Kessler, C. Prahst, J. Kroll, H. Augustin, G. Neufeld 2007 Neuropilin-1 and neuropilin-2 enhance VEGF121 stimulated signal transduction by the VEGFR-2 receptor. FASEB J. 211, 915–926. doi:10.1096/fj.06-6277com

    Article  Google Scholar 

  36. Sperinde G. V., M. A. Nugent 1998 Heparan sulfate proteoglycans control bFGF processing in vascular smooth muscle cells. Biochemistry. 37, 13153–13164. doi:10.1021/bi980600z

    Article  PubMed  CAS  Google Scholar 

  37. Sperinde G. V., M. A. Nugent 2000 Mechanisms of FGF-2 intracellular processing: A kinetic analysis of the role of heparan sulfate proteoglycans. Biochemistry. 39, 3788–3796. doi:10.1021/bi992243d

    Article  PubMed  CAS  Google Scholar 

  38. Tkachenko E., J. M. Rhodes, M. Simons 2005 Syndecans: new kids on the signaling block. Circ. Rec. 96, 488–500. doi:10.1161/01.RES.0000159708.71142.c8

    Article  CAS  Google Scholar 

  39. Turnbull J., A. Powell, S. Guimond 2001 Heparan sulfate: decoding a dynamic multifunctional cell regulator. Trends Cell Biol. 11, 75–82. doi:10.1016/S0962-8924(00)01897-3

    Article  PubMed  CAS  Google Scholar 

  40. Wouters-Ballman P., I. Donnay, N. Devleeschouwer, J. Verstegen 1995 Iodination of mouse EGF with chloramine T at 4 degrees C: characterization of the iodinated peptide and comparison with other labelling methods. J. Recept. Signal. Transduct. Res. 15, 737–746. doi:10.3109/10799899509079903

    Article  PubMed  CAS  Google Scholar 

  41. Zhang Y., J. Li, C. Partovian, F. W. Sellke, M. Simons 2003 Syndecan-4 modulates basic fibroblast growth factor 2 signaling in vivo. Am. J. Physiol. Heart Circ. Physiol. 284, H2078–H2082

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by grants from NIH (HL56200 and HL86644).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimberly Forsten-Williams.

Appendix

Appendix

We developed two related models for this work and the equations are listed below. For HB-EGF binding in the “non-receptor-coupling” model:

$$ \frac{{dR_{{\text{H}}} }} {{dt}} = S^{{\text{H}}}_{{\text{R}}} - k^{{{\text{RH}}}}_{{\text{f}}} HR_{{\text{H}}} + k^{{{\text{RH}}}}_{{\text{r}}} C_{{\text{H}}} + k_{{{\text{uc}}}} T_{{\text{H}}} - k_{{\text{c}}} G_{{\text{H}}} R_{{\text{H}}} - k_{{\text{i}}} R_{{\text{H}}} $$
(1)
$$ \frac{{dC_{{\text{H}}} }} {{dt}} = k^{{{\text{RH}}}}_{{\text{f}}} HR_{{\text{H}}} - k^{{{\text{RH}}}}_{{\text{r}}} C_{{\text{H}}} - k_{{\text{c}}} C_{{\text{H}}} C_{{\text{H}}} + 2k_{{{\text{uc}}}} C_{{{\text{2H}}}} + k_{{{\text{uc}}}} T_{{\text{H}}} - k_{{\text{c}}} P_{{\text{H}}} C_{{\text{H}}} - k_{{\text{i}}} C_{{\text{H}}} $$
(2)
$$ \frac{{dC_{{{\text{2H}}}} }} {{dt}} = 0.5k_{{\text{c}}} C_{{\text{H}}} C_{{\text{H}}} - k_{{{\text{uc}}}} C_{{{\text{2H}}}} + k_{{{\text{uc}}}} X_{{\text{H}}} - k_{{\text{c}}} P_{{\text{H}}} C_{{{\text{2H}}}} - k_{{{\text{i*}}}} C_{{{\text{2H}}}} $$
(3)
$$ \frac{{dP_{{\text{H}}} }} {{dt}} = S^{{\text{H}}}_{{\text{P}}} - k^{{{\text{PH}}}}_{{\text{f}}} HP_{{\text{H}}} + k^{{{\text{PH}}}}_{{\text{r}}} G_{{\text{H}}} + k_{{{\text{uc}}}} T_{{\text{H}}} - k_{{\text{c}}} P_{{\text{H}}} C_{{\text{H}}} - k_{{\text{c}}} C_{{2{\text{H}}}} P_{{\text{H}}} + k_{{{\text{uc}}}} X_{{\text{H}}} - k_{{\text{c}}} X_{{\text{H}}} P_{{\text{H}}} + k_{{{\text{uc}}}} T_{{{\text{2H}}}} - k_{{\text{i}}} P_{{\text{H}}} $$
(4)
$$ \frac{{dG_{\rm H} }} {{dt}} = k^{{\rm PH}}_{\rm f} HP_{\rm H} - k^{{\rm PH}}_{\rm r} G_{\rm H} + k_{{\rm uc}} T_{\rm H} - k_{\rm c} G_{\rm H} R_{\rm H} - k_{\rm i} G_{\rm H} $$
(5)
$$ \frac{{dX_{{\text{H}}} }} {{dt}} = k_{{\text{c}}} C_{{2{\text{H}}}} P_{{\text{H}}} - k_{{{\text{uc}}}} X_{{\text{H}}} + k_{{{\text{uc}}}} T_{{{\text{2H}}}} - k_{{\text{c}}} X_{{\text{H}}} P_{{\text{H}}} - k_{{{\text{i*}}}} X_{{\text{H}}} $$
(6)
$$ \frac{{dT_{{\text{H}}} }} {{dt}} = k_{{\text{c}}} G_{{\text{H}}} R_{{\text{H}}} - k_{{{\text{uc}}}} T_{{\text{H}}} + k_{{\text{c}}} P_{{\text{H}}} C_{{\text{H}}} - k_{{{\text{uc}}}} T_{{\text{H}}} - k_{{\text{c}}} T_{{\text{H}}} T_{{\text{H}}} + 2k_{{{\text{uc}}}} T_{{{\text{2H}}}} - k_{{\text{i}}} T_{{\text{H}}} $$
(7)
$$ \frac{{dT_{{{\text{2H}}}} }} {{dt}} = k_{{\text{c}}} X_{{\text{H}}} P_{{\text{H}}} - k_{{{\text{uc}}}} T_{{{\text{2H}}}} + 0.5k_{{\text{c}}} T_{{\text{H}}} T_{{\text{H}}} - k_{{{\text{uc}}}} T_{{{\text{2H}}}} - k_{{{\text{i*}}}} T_{{{\text{2H}}}} $$
(8)
$$ V\frac{{dH}} {{dt}} = - k^{{{\text{RH}}}}_{{\text{f}}} HR_{{\text{H}}} - k^{{{\text{RH}}}}_{{\text{r}}} C_{{\text{H}}} - k^{{{\text{PH}}}}_{{\text{f}}} HP_{{\text{H}}} + k^{{{\text{PH}}}}_{{\text{r}}} G_{{\text{H}}}$$
(9)

Nine additional equations identical in structure are written for FGF-2 binding with H replaced by F

For HSPG common sites:

$$ \frac{{dP^{{\text{c}}} }} {{dt}} = - k^{{{\text{PcF}}}}_{{\text{f}}} FP^{{\text{c}}} + k^{{{\text{PcF}}}}_{{\text{r}}} G^{{\text{c}}}_{{\text{F}}} - k^{{{\text{PcH}}}}_{{\text{f}}} HP^{{\text{c}}} + k^{{{\text{PcH}}}}_{{\text{r}}} G^{{\text{c}}}_{{\text{H}}} $$
(10)
$$ \frac{{dG^{{\text{c}}}_{{\text{H}}} }} {{dt}} = k^{{{\text{PcH}}}}_{{\text{f}}} HP^{{\text{c}}} - k^{{{\text{PcH}}}}_{{\text{r}}} G^{{\text{c}}}_{{\text{H}}} $$
(11)
$$ \frac{{dG^{{\text{c}}}_{{\text{F}}} }} {{dt}} = k^{{{\text{PcF}}}}_{{\text{f}}} FP^{{\text{c}}} - k^{{{\text{PcF}}}}_{{\text{r}}} G^{{\text{c}}}_{{\text{F}}} $$
(12)

In the “receptor-coupling” model, HSPG common sites are able to interact with receptors to form higher order complexes. Hence Eqs. (1012) are replaced by Eqs. (1315)

$$ \begin{aligned}{} & \frac{{dP_{{\text{c}}} }} {{dt}} = S^{{\text{C}}}_{{\text{P}}} - k^{{{\text{PcF}}}}_{{\text{f}}} FP^{{\text{c}}} + k^{{{\text{PcF}}}}_{{\text{r}}} G^{{\text{c}}}_{{\text{F}}} - k^{{{\text{PcH}}}}_{{\text{f}}} HP^{{\text{c}}} + k^{{{\text{PcH}}}}_{{\text{r}}} G^{{\text{c}}}_{{\text{H}}} - k_{{\text{c}}} C_{{\text{F}}} P^{{\text{c}}} + k_{{{\text{uc}}}} T^{{\text{c}}}_{{\text{F}}} - k_{{\text{c}}} C_{{{\text{2F}}}} P^{{\text{c}}} \\ & + k_{{{\text{uc}}}} X^{{\text{c}}}_{{\text{F}}} - k_{{\text{c}}} X^{{\text{c}}}_{{\text{F}}} P^{{\text{c}}} + k_{{{\text{uc}}}} T^{{\text{c}}}_{{{\text{2F}}}} - k_{{\text{c}}} X_{{\text{F}}} P^{{\text{c}}} + k_{{{\text{uc}}}} T^{{\text{c}}}_{{{\text{FF}}}} - k_{{\text{c}}} C_{{\text{H}}} P^{{\text{c}}} + k_{{{\text{uc}}}} T^{{\text{c}}}_{{\text{H}}} - k_{{\text{c}}} C_{{{\text{2H}}}} P^{{\text{c}}} \\ & + k_{{{\text{uc}}}} X^{{\text{c}}}_{{\text{H}}} - k_{{\text{c}}} X^{{\text{c}}}_{{\text{H}}} P^{{\text{c}}} + k_{{{\text{uc}}}} T^{{\text{c}}}_{{{\text{2H}}}} - k_{{\text{c}}} X_{{\text{H}}} P^{{\text{c}}} + k_{{{\text{uc}}}} T^{{\text{c}}}_{{{\text{HH}}}} - k_{{\text{i}}} P^{{\text{c}}} \\ \end{aligned} $$
(13)
$$ \frac{{dG^{{\text{c}}}_{{\text{H}}} }} {{dt}} = k^{{{\text{PcH}}}}_{{\text{f}}} HP^{{\text{c}}} - k^{{{\text{PcH}}}}_{{\text{r}}} G^{{\text{c}}}_{{\text{H}}} - k_{{\text{c}}} G^{{\text{c}}}_{{\text{H}}} R_{{\text{H}}} + k_{{{\text{uc}}}} T^{{\text{c}}}_{{\text{H}}} - k_{{\text{i}}} G^{{\text{c}}}_{{\text{H}}} $$
(14)
$$ \frac{{dG^{{\text{c}}}_{{\text{F}}} }} {{dt}} = k^{{{\text{PcF}}}}_{{\text{f}}} FP^{{\text{c}}} - k^{{{\text{PcF}}}}_{{\text{r}}} G^{{\text{c}}}_{{\text{F}}} - k_{{\text{c}}} G^{{\text{c}}}_{{\text{F}}} R_{{\text{F}}} + k_{{{\text{uc}}}} T^{{\text{c}}}_{{\text{F}}} - k_{{\text{i}}} G^{{\text{c}}}_{{\text{F}}} $$
(15)

Plus the addition of:

$$ \frac{{dT^{{\text{c}}}_{{\text{H}}} }} {{dt}} = k_{{\text{c}}} G^{{\text{c}}}_{{\text{H}}} R_{{\text{H}}} - k_{{{\text{uc}}}} T^{{\text{c}}}_{{\text{H}}} + k_{{\text{c}}} P^{{\text{c}}} C_{{\text{H}}} - k_{{{\text{uc}}}} T^{{\text{c}}}_{{\text{H}}} - k_{{\text{c}}} T^{{\text{c}}}_{{\text{H}}} T^{{\text{c}}}_{{\text{H}}} + 2k_{{{\text{uc}}}} T^{{\text{c}}}_{{{\text{2H}}}} - k_{{\text{c}}} T^{{\text{c}}}_{{\text{H}}} T_{{\text{H}}} + 2k_{{{\text{uc}}}} T^{{\text{c}}}_{{{\text{HH}}}} - k_{\rm i} T^{{\text{c}}}_{{\text{H}}} $$
(16)
$$ \frac{{dT^{{\text{c}}}_{{{\text{2H}}}} }} {{dt}} = 0.5k_{{\text{c}}} T^{{\text{c}}}_{{\text{H}}} T^{{\text{c}}}_{{\text{H}}} - k_{{{\text{uc}}}} T^{{\text{c}}}_{{{\text{2H}}}} + k_{{\text{c}}} X^{{\text{c}}}_{{\text{H}}} P^{{\text{c}}} - k_{{{\text{uc}}}} T^{{\text{c}}}_{{{\text{2H}}}} - k_{{{\text{i*}}}} T^{{\text{c}}}_{{{\text{2H}}}} $$
(17)
$$ \frac{{dT^{{\text{c}}}_{{{\text{HH}}}} }} {{dt}} = k_{{\text{c}}} T^{{\text{c}}}_{{\text{H}}} T_{{\text{H}}} - 3k_{{{\text{uc}}}} T^{{\text{c}}}_{{{\text{HH}}}} + k_{{\text{c}}} X^{{\text{c}}}_{{\text{H}}} P_{{\text{H}}} - k_{{\text{c}}} X_{{\text{H}}} P^{{\text{c}}} - k_{{{\text{i*}}}} T^{{\text{c}}}_{{{\text{HH}}}} $$
(18)
$$ \frac{{dX^{{\text{c}}}_{{\text{H}}} }} {{dt}} = k_{{\text{c}}} C_{{{\text{2H}}}} P^{{\text{c}}} - k_{{{\text{uc}}}} X^{{\text{c}}}_{{\text{H}}} - k_{{\text{c}}} X^{{\text{c}}}_{{\text{H}}} P_{{\text{H}}} + k_{{{\text{uc}}}} T^{{\text{c}}}_{{{\text{HH}}}} - k_{{\text{c}}} X^{{\text{c}}}_{{\text{H}}} P^{{\text{c}}} + k_{{{\text{uc}}}} T^{{\text{c}}}_{{{\text{2H}}}} - k_{{{\text{i*}}}} X^{{\text{c}}}_{{\text{H}}} $$
(19)

and four additional identical equations for FGF-2 with H replaced by F.

Also, note that additional terms reflecting the interactions of the HSPG common sites with HB-EGF and FGF-2 receptors were added to Eqs. (19) and the accompanying FGF-2 equations to balance the system.

The parameter symbols and values are given in Table 2. Unbound receptors (R H, R F ), ligand bound receptors (C H, C F ), receptor–ligand dimers (C 2H, C 2F), unbound ligand-specific proteoglycans (P H, P F), unbound common site proteoglycan (P c), ligand bound proteoglycans (G H, G F, G cH , G cF ), receptor–ligand–proteoglycan complexes (T H, T F, T cH , T cF ), receptor–ligand dimers bound to a proteoglycan site (X H, X F, X cH , X cF ), dimers of receptor–ligand–proteoglycan complexes (T 2H, T 2F, T HH, T cHH , T c2H , T c2F ), and ligand concentration (H, F) form the variables in the system with subscripts H and F representing HB-EGF and FGF-2, respectively. The superscript c indicates HSPG common site.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forsten-Williams, K., Chu, C.L., Fannon, M. et al. Control of Growth Factor Networks by Heparan Sulfate Proteoglycans. Ann Biomed Eng 36, 2134–2148 (2008). https://doi.org/10.1007/s10439-008-9575-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9575-z

Keywords

Navigation