Skip to main content
Log in

Using ionospheric corrections from the space-based augmentation systems for low earth orbiting satellites

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

For low earth orbit satellite global positioning systems (GPS) receivers, ionospheric delay corrections from space-based augmentation system (SBAS) can be considered for real-time use. Due to the different total electron contents between ground and low altitude orbits, a scaling factor is required to adjust the ionospheric corrections. After an analysis of the scale factor determination with GPS data from the NASA/DLR gravity recovery and climate experiment satellite is conducted, evaluations of WAAS, MSAS, and EGNOS ionospheric correction accuracies are performed. In terms of the ionospheric correction error in 2012, SBAS outperforms GPS broadcast with the reduction of 42 %. This SBAS ionospheric correction accuracy shows a high level of correlation with solar flux F10.7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bock H, Jäggi A, Dach R, Schaer S, Beutler G (2009) GPS single-frequency orbit determination for low earth orbiting satellites. Adv Space Res 43:783–791

    Article  Google Scholar 

  • Case K, Kruizinga G, Wu S (2010) GRACE level 1B data product user handbook, JPL Publication D-22027

  • Chao YC, Tasi Y-J, Walter T, Kee C, Enge P, Parkinson B (1995) An algorithm for inter-frequency bias calibration and application to WAAS ionosphere modeling. In: Proceedings ION GPS 1995, Institute of Navigation, Palm Springs, pp 639–646

  • Eurocontrol, GNSS Tools Team (2006) PEGASUS: Technical Notes on SBAS

  • Garcia-Fernandez M, Montenbruck O (2006) LEO satellite navigation errors and vertical total electron content in single-frequency GPS tracking. Radio Sci 41:RS5001

    Article  Google Scholar 

  • Hwang Y, Born GH (2005) Orbit determination strategy using single-frequency global-positioning-system data. J Spacecr Rocket 42(5):896–901

    Article  Google Scholar 

  • Kim J, Tapley BD (2002) Error analysis of a low–low satellite-to-satellite tracking mission. J Guid Control Dyn 25(6):1100–1106

    Article  Google Scholar 

  • Klobuchar JA (1996) Global positioning system: theory and applications. In: Ionospheric effects in GPS. AIAA Publications, Washington, pp 485–515

  • Lear WM (1987) GPS navigation for low-earth orbiting vehicles, NASA 87-FM-2, JSC-32031, rev. 1, Lyndon B. Johnson Space Cent., Houston, Tex

  • Montenbruck O (2003) Kinematic GPS positioning of LEO satellites using ionosphere-free single frequency measurements. Aerosp Sci Technol 7:396–405

    Article  Google Scholar 

  • Montenbruck O, Gill E (2002) Ionospheric correction for GPS tracking of LEO satellites. J Navig 55:293–304

    Article  Google Scholar 

  • RTCA (2001) Minimum operational performance standards for global positioning system/wide area augmentation system airborne equipment, DO-229D. Radio Technical Commission for Aeronautics (RTCA), Washington

  • Tancredi U, Renga A, Grassi M (2011) Ionospheric path delay models for spaceborne GPS receivers flying in formation with large baselines. Adv Space Res 48(3):507–520

    Article  Google Scholar 

  • Yang Y, Li Y, Dempster AG, Rizos C (2013) Ionospheric path delay modelling for spacecraft formation flying. In: International Global Navigation Satellite Systems Society Symposium 2013, Australia, paper 31

  • Yoon JC, Roh KM, Park ES, Moon BY, Choi KH, Lee JS, Lee BS, Kim J, Chang YK (2002) Orbit determination of spacecraft using Global Positioning System single frequency measurements. J Spacecr Rocket 39(5):796–801

    Article  Google Scholar 

  • Yue X, Schreiner WS, Hunt DC, Rocken C, Kuo YH (2011) Quantitative evaluation of the low earth orbit satellite based slant total electron. Space Weather 9:S09001

    Article  Google Scholar 

  • Yunck TP (1996) Orbit determination. In: Parkinson BW, Spilker JJ (eds) Global positioning system. Theory and applications. AIAA Publications, Washington, DC

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Space Core Technology Development Program funded by the Ministry of Science, ICT and Future Planning (NRF-2012M1A 3A3A02033484).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeongrae Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Lee, Y.J. Using ionospheric corrections from the space-based augmentation systems for low earth orbiting satellites. GPS Solut 19, 423–431 (2015). https://doi.org/10.1007/s10291-014-0402-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-014-0402-8

Keywords

Navigation