Skip to main content
Log in

Current status of bone graft options for anterior interbody fusion of the cervical and lumbar spine

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Anterior cervical discectomy and fusion (ACDF) and anterior lumbar interbody fusion (ALIF) are common surgical procedures for degenerative disc disease of the cervical and lumbar spine. Over the years, many bone graft options have been developed and investigated aimed at complimenting or substituting autograft bone, the traditional fusion substrate. Here, we summarise the historical context, biological basis and current best evidence for these bone graft options in ACDF and ALIF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdullah KG, Steinmetz MP, Benzel EC, Mroz TE (2011) The state of lumbar fusion extenders. Spine 36:E1328–1334

    PubMed  Google Scholar 

  2. Ackerman SJ, Mafilios MS, Polly DW Jr (2002) Economic evaluation of bone morphogenetic protein versus autogenous iliac crest bone graft in single-level anterior lumbar fusion: an evidence-based modeling approach. Spine 27:S94–99

    PubMed  Google Scholar 

  3. Agarwal R, Williams K, Umscheid CA, Welch WC (2009) Osteoinductive bone graft substitutes for lumbar fusion: a systematic review. J Neurosurg Spine 11:729–740

    PubMed  Google Scholar 

  4. Alden TD, Pittman DD, Beres EJ, Hankins GR, Kallmes DF, Wisotsky BM, Kerns KM, Helm GA (1999) Percutaneous spinal fusion using bone morphogenetic protein-2 gene therapy. J Neurosurg 90:109–114

    CAS  PubMed  Google Scholar 

  5. An HS, Simpson JM, Glover JM, Stephany J (1995) Comparison between allograft plus demineralized bone matrix versus autograft in anterior cervical fusion. A prospective multicenter study. Spine 20:2211–2216

    CAS  PubMed  Google Scholar 

  6. Arlet V, Jiang L, Steffen T, Ouellet J, Reindl R, Aebi M (2006) Harvesting local cylinder autograft from adjacent vertebral body for anterior lumbar interbody fusion: surgical technique, operative feasibility and preliminary clinical results. Eur Spine J 15:1352–1359

    PubMed Central  PubMed  Google Scholar 

  7. Arora NS, Ramanayake T, Ren Y-F, Romanos GE (2009) Platelet-rich plasma: a literature review. Implant Dent 18:303–310

    PubMed  Google Scholar 

  8. Bae H, Zhao L, Zhu D, Kanim LE, Wang JC, Delamarter RB (2010) Variability across ten production lots of a single demineralized bone matrix product. J Bone Joint Surg Am 92:427–435

    PubMed  Google Scholar 

  9. Bae HW, Zhao L, Kanim LEA, Wong P, Delamarter RB, Dawson EG (2006) Intervariability and intravariability of bone morphogenetic proteins in commercially available demineralized bone matrix products. Spine 31:1299–1306, discussion 1307–1298

    PubMed  Google Scholar 

  10. Bailey RW, Badgley CE (1960) Stabilization of the cervical spine by anterior fusion. J Bone Joint Surg Am 42-A:565–594

    CAS  PubMed  Google Scholar 

  11. Baskin DS, Ryan P, Sonntag V, Westmark R, Widmayer MA (2003) A prospective, randomized, controlled cervical fusion study using recombinant human bone morphogenetic protein-2 with the CORNERSTONE-SR allograft ring and the ATLANTIS anterior cervical plate. Spine 28:1219–1224, discussion 1225

    PubMed  Google Scholar 

  12. Bishop RC, Moore KA, Hadley MN (1996) Anterior cervical interbody fusion using autogeneic and allogeneic bone graft substrate: a prospective comparative analysis. J Neurosurg 85:206–210

    CAS  PubMed  Google Scholar 

  13. Blokhuis TJ, Termaat MF, den Boer FC, Patka P, Bakker FC, Haarman HJ (2000) Properties of calcium phosphate ceramics in relation to their in vivo behavior. J Trauma-Injury Infection Critical Care 48:179–186

    CAS  Google Scholar 

  14. Boden SD, Zdeblick TA, Sandhu HS, Heim SE (2000) The use of rhBMP-2 in interbody fusion cages. Definitive evidence of osteoinduction in humans: a preliminary report. Spine 25:376–381

    CAS  PubMed  Google Scholar 

  15. Brand RA (2009) Marshall R. Urist, 1914–2001. Clin Orthop Rela Res 467:3049–3050

  16. Brown MD, Malinin TI, Davis PB (1976) A roentgenographic evaluation of frozen allografts versus autografts in anterior cervical fusions. Clin Orthop Relat Res 119:231–236

    Google Scholar 

  17. Burkus JK, Gornet MF, Dickman CA, Zdeblick TA (2002) Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord Tech 15:337–349

    PubMed  Google Scholar 

  18. Burkus JK, Gornet MF, Glassman SD, Slosar PJ, Rosner MK, Deckey JE, Nowak J, Hatcher BM (2011) Blood serum antibody analysis and long-term follow-up of patients treated with recombinant human bone morphogenetic protein-2 in the lumbar spine. Spine 36:2158–2167

    PubMed  Google Scholar 

  19. Burkus JK, Gornet MF, Schuler TC, Kleeman TJ, Zdeblick TA (2009) Six-year outcomes of anterior lumbar interbody arthrodesis with use of interbody fusion cages and recombinant human bone morphogenetic protein-2. J Bone Joint Surg Am 91:1181–1189

    PubMed  Google Scholar 

  20. Burkus JK, Sandhu HS, Gornet MF, Longley MC (2005) Use of rhBMP-2 in combination with structural cortical allografts: clinical and radiographic outcomes in anterior lumbar spinal surgery. J Bone Joint Surg Am 87:1205–1212

    PubMed  Google Scholar 

  21. Burkus JK, Transfeldt EE, Kitchel SH, Watkins RG, Balderston RA (2002) Clinical and radiographic outcomes of anterior lumbar interbody fusion using recombinant human bone morphogenetic protein-2. Spine 27:2396–2408

    PubMed  Google Scholar 

  22. Burns BH (1933) An operation for spondylolisthesis. Lancet 1:1233

    Google Scholar 

  23. Buttermann GR (2008) Prospective nonrandomized comparison of an allograft with bone morphogenic protein versus an iliac-crest autograft in anterior cervical discectomy and fusion. Spine J: Official Journal of the North American Spine Society 8:426–435

    Google Scholar 

  24. Cahill KS, Chi JH, Groff MW, McGuire K, Afendulis CC, Claus EB (2011) Outcomes for single-level lumbar fusion: the role of bone morphogenetic protein. Spine 36:2354–2362

    PubMed Central  PubMed  Google Scholar 

  25. Cammisa FP Jr, Lowery G, Garfin SR, Geisler FH, Klara PM, McGuire RA, Sassard WR, Stubbs H, Block JE (2004) Two-year fusion rate equivalency between Grafton DBM gel and autograft in posterolateral spine fusion: a prospective controlled trial employing a side-by-side comparison in the same patient. Spine 29:660–666

    PubMed  Google Scholar 

  26. Capener N (1932) Spondylolisthesis. Br J Surg 19:374–386

    Google Scholar 

  27. Carragee EJ, Hurwitz EL, Weiner BK (2011) A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J: Official Journal of the North American Spine Society 11:471–491

    Google Scholar 

  28. Carragee EJ, Mitsunaga KA, Hurwitz EL, Scuderi GJ (2011) Retrograde ejaculation after anterior lumbar interbody fusion using rhBMP-2: a cohort controlled study. Spine J: Official Journal of the North American Spine Society 11:511–516

    Google Scholar 

  29. Center for Devices and Radiological Health (2008) FDA public health notification: life-threatening complications associated with recombinant human bone morphogenetic protein in cervical spine fusion. http://www.fda.gov/MedicalDevices/Safety/AlertsandNotices/PublicHealthNotifications/ucm062000.htm. Accessed 8 January 2012

  30. Chau AMT, Mobbs RJ (2009) Bone graft substitutes in anterior cervical discectomy and fusion. Eur Spine J 18:449–464

    PubMed Central  PubMed  Google Scholar 

  31. Cho D-Y, Lee W-Y, Sheu P-C, Chen C-C (2005) Cage containing a biphasic calcium phosphate ceramic (Triosite) for the treatment of cervical spondylosis. Surg Neurol 63:497–503, discussion 503–494

    PubMed  Google Scholar 

  32. Cloward RB (1958) The anterior approach for removal of ruptured cervical disks. J Neurosurg 15:602–617

    CAS  PubMed  Google Scholar 

  33. Comer GC, Smith MW, Hurwitz EL, Mitsunaga KA, Kessler R, Carragee EJ (2012) Retrograde ejaculation after anterior lumbar interbody fusion with and without bone morphogenetic protein-2 augmentation: a 10-year cohort controlled study. Spine J: Official Journal of the North American Spine Society 12:881–890

    Google Scholar 

  34. Daculsi G, Baroth S, LeGeros R (2010) 20 years of biphasic calcium phosphate bioceramics development and applications. In: Narayan R, Colombo P, Singh D, Salem J (eds) Advances in bioceramics and porous ceramics II. Wiley, Hoboken, pp 45–58

  35. Dai L-Y, Jiang L-S (2008) Anterior cervical fusion with interbody cage containing beta-tricalcium phosphate augmented with plate fixation: a prospective randomized study with 2-year follow-up. Eur Spine J 17:698–705

    PubMed Central  PubMed  Google Scholar 

  36. Delawi D, Dhert WJA, Rillardon L, Gay E, Prestamburgo D, Garcia-Fernandez C, Guerado E, Specchia N, Van Susante JLC, Verschoor N, van Ufford HMEQ, Oner FC (2010) A prospective, randomized, controlled, multicenter study of osteogenic protein-1 in instrumented posterolateral fusions: report on safety and feasibility. Spine 35:1185–1191

    CAS  PubMed  Google Scholar 

  37. Dennis JE, Haynesworth SE, Young RG, Caplan AI (1992) Osteogenesis in marrow-derived mesenchymal cell porous ceramic composites transplanted subcutaneously: effect of fibronectin and laminin on cell retention and rate of osteogenic expression. Cell Transplant 1:23–32

    CAS  PubMed  Google Scholar 

  38. Dennis S, Watkins R, Landaker S, Dillin W, Springer D (1989) Comparison of disc space heights after anterior lumbar interbody fusion. Spine 14:876–878

    CAS  PubMed  Google Scholar 

  39. Deyo RA, Ching A, Matsen L, Martin BI, Kreuter W, Jarvik JG, Angier H, Mirza SK (2012) Use of bone morphogenetic proteins in spinal fusion surgery for older adults with lumbar stenosis: trends, complications, repeat surgery, and charges. Spine 37:222–230

    PubMed Central  PubMed  Google Scholar 

  40. Dorozhkin SV (2010) Bioceramics of calcium orthophosphates. Biomaterials 31:1465–1485

    CAS  PubMed  Google Scholar 

  41. Ehrler DM, Vaccaro AR (2000) The use of allograft bone in lumbar spine surgery. Clin Orthop Relat Res 371:38–45

    Google Scholar 

  42. Epstein NE (2012) Iliac crest autograft versus alternative constructs for anterior cervical spine surgery: pros, cons, and costs. Surg Neurol Int 3:S143–156

    PubMed Central  PubMed  Google Scholar 

  43. Falavigna A, Righesso O, Volquind D, Teles AR (2009) Anterior cervical interbody fusion with hydroxyapatite graft: clinical and radiological analysis of graft breakage. Spine 34:2769–2774

    PubMed  Google Scholar 

  44. Feiz-Erfan I, Harrigan M, Sonntag VKH, Harrington TR (2007) Effect of autologous platelet gel on early and late graft fusion in anterior cervical spine surgery. J Neurosurg Spine 7:496–502

    PubMed  Google Scholar 

  45. Glassman SD, Carreon LY, Campbell MJ, Johnson JR, Puno RM, Djurasovic M, Dimar JR (2008) The perioperative cost of Infuse bone graft in posterolateral lumbar spine fusion. Spine J: Official Journal of the North American Spine Society 8:443–448

    Google Scholar 

  46. Glassman SD, Carreon LY, Djurasovic M, Campbell MJ, Puno RM, Johnson JR, Dimar JR (2008) RhBMP-2 versus iliac crest bone graft for lumbar spine fusion: a randomized, controlled trial in patients over sixty years of age. Spine 33:2843–2849

    PubMed  Google Scholar 

  47. Gottfried ON, Dailey AT (2008) Mesenchymal stem cell and gene therapies for spinal fusion. Neurosurgery 63:380–391, discussion 391–382

    PubMed  Google Scholar 

  48. Guyer RD, Tromanhauser SG, Regan JJ (2007) An economic model of one-level lumbar arthroplasty versus fusion. Spine J: Official Journal of the North American Spine Society 7:558–562

    Google Scholar 

  49. Heller JG, Sasso RC, Papadopoulos SM, Anderson PA, Fessler RG, Hacker RJ, Coric D, Cauthen JC, Riew DK (2009) Comparison of BRYAN cervical disc arthroplasty with anterior cervical decompression and fusion: clinical and radiographic results of a randomized, controlled, clinical trial. Spine 34:101–107

    PubMed  Google Scholar 

  50. Hidaka C, Goshi K, Rawlins B, Boachie-Adjei O, Crystal RG (2003) Enhancement of spine fusion using combined gene therapy and tissue engineering BMP-7-expressing bone marrow cells and allograft bone. Spine 28:2049–2057

    PubMed  Google Scholar 

  51. Hinsenkamp M, Muylle L, Eastlund T, Fehily D, Noel L, Strong DM (2012) Adverse reactions and events related to musculoskeletal allografts: reviewed by the World Health Organisation Project NOTIFY. Int Orthop 36:633–641

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Ijiri S, Yamamuro T, Nakamura T, Kotani S, Notoya K (1994) Effect of sterilization on bone morphogenetic protein. J Orthop Res 12:628–636

    CAS  PubMed  Google Scholar 

  53. Ito H, Tsuchiya J, Asami G (1934) A new radical operation for Pott’s disease. J Bone Joint Surg Br 16:499–515

    Google Scholar 

  54. Janssen ME, Lam C, Beckham R (2001) Outcomes of allogenic cages in anterior and posterior lumbar interbody fusion. Eur Spine J 2:S158–S168

    Google Scholar 

  55. Jenis LG, Banco RJ, Kwon B (2006) A prospective study of autologous growth factors (AGF) in lumbar interbody fusion. Spine J: Official Journal of the North American Spine Society 6:14–20

    Google Scholar 

  56. Johnsson R, Stromqvist B, Aspenberg P (2002) Randomized radiostereometric study comparing osteogenic protein-1 (BMP-7) and autograft bone in human noninstrumented posterolateral lumbar fusion: 2002 Volvo Award in clinical studies. Spine 27:2654–2661

    PubMed  Google Scholar 

  57. Kaito T, Ngo SS, Wang JC (2011) Ex vivo gene therapy for spinal fusion. In: Kang C (ed) Gene therapy applications. InTech, Croatia, pp 227–240

    Google Scholar 

  58. Kanayama M, Hashimoto T, Shigenobu K, Yamane S, Bauer TW, Togawa D (2006) A prospective randomized study of posterolateral lumbar fusion using osteogenic protein-1 (OP-1) versus local autograft with ceramic bone substitute: emphasis of surgical exploration and histologic assessment. Spine 31:1067–1074

    PubMed  Google Scholar 

  59. Kang J, An H, Hilibrand A, Yoon ST, Kavanagh E, Boden S (2012) Grafton and local bone have comparable outcomes to iliac crest bone in instrumented single-level lumbar fusions. Spine 37:1083–1091

    PubMed  Google Scholar 

  60. Khoueir P, Oh BC, DiRisio DJ, Wang MY (2007) Multilevel anterior cervical fusion using a collagen-hydroxyapatite matrix with iliac crest bone marrow aspirate: an 18-month follow-up study. Neurosurgery 61:963–970, discussion 970–961

    PubMed  Google Scholar 

  61. Kim DH, Rhim R, Li L, Martha J, Swaim BH, Banco RJ, Jenis LG, Tromanhauser SG (2009) Prospective study of iliac crest bone graft harvest site pain and morbidity. Spine J: Official Journal of the North American Spine Society 9:886–892

    Google Scholar 

  62. Lad SP, Nathan JK, Boakye M (2011) Trends in the use of bone morphogenetic protein as a substitute to autologous iliac crest bone grafting for spinal fusion procedures in the United States. Spine 36:E274–281

    PubMed  Google Scholar 

  63. Lane JD, Moore ES (1948) Transperitoneal approach to the intervertebral disc in the lumbar area. Ann Surg 127:537–551

    PubMed  Google Scholar 

  64. Linovitz RJ, Peppers TA (2002) Use of an advanced formulation of beta-tricalcium phosphate as a bone extender in interbody lumbar fusion. Orthopedics 25:s585–589

    PubMed  Google Scholar 

  65. Lofgren H, Johannsson V, Olsson T, Ryd L, Levander B (2000) Rigid fusion after Cloward operation for cervical disc disease using autograft, allograft, or xenograft: a randomized study with radiostereometric and clinical follow-up assessment. Spine 25:1908–1916

    CAS  PubMed  Google Scholar 

  66. Loguidice VA, Johnson RG, Guyer RD, Stith WJ, Ohnmeiss DD, Hochschuler SH, Rashbaum RF (1988) Anterior lumbar interbody fusion. Spine 13:366–369

    CAS  PubMed  Google Scholar 

  67. Malinin T, Temple HT (2007) Comparison of frozen and freeze-dried particulate bone allografts. Cryobiology 55:167–170

    CAS  PubMed  Google Scholar 

  68. McConnell JR, Freeman BJC, Debnath UK, Grevitt MP, Prince HG, Webb JK (2003) A prospective randomized comparison of coralline hydroxyapatite with autograft in cervical interbody fusion. Spine 28:317–323

    PubMed  Google Scholar 

  69. Miller JA, Schmatz C, Schultz AB (1988) Lumbar disc degeneration: correlation with age, sex, and spine level in 600 autopsy specimens. Spine 13:173–178

    CAS  PubMed  Google Scholar 

  70. Moon HJ, Kim JH, Kim J-H, Kwon T-H, Chung H-S, Park Y-K (2011) The effects of anterior cervical discectomy and fusion with stand-alone cages at two contiguous levels on cervical alignment and outcomes. Acta Neurochir (Wien) 153:559–565

    Google Scholar 

  71. Mummaneni PV, Burkus JK, Haid RW, Traynelis VC, Zdeblick TA (2007) Clinical and radiographic analysis of cervical disc arthroplasty compared with allograft fusion: a randomized controlled clinical trial. J Neurosurg Spine 6:198–209

    PubMed  Google Scholar 

  72. Murrey D, Janssen M, Delamarter R, Goldstein J, Zigler J, Tay B, Darden B (2009) Results of the prospective, randomized, controlled multicenter Food and Drug Administration investigational device exemption study of the ProDisc-C total disc replacement versus anterior discectomy and fusion for the treatment of 1-level symptomatic cervical disc disease. Spine J: Official Journal of the North American Spine Society 9:275–286

    Google Scholar 

  73. Muschler GF, Boehm C, Easley K (1997) Aspiration to obtain osteoblast progenitor cells from human bone marrow: the influence of aspiration volume. J Bone Joint Surg Am 79:1699–1709 (Erratum appears in J Bone Joint Surg Am 1998 Feb;80(2):302)

    CAS  PubMed  Google Scholar 

  74. Muschler GF, Nitto H, Matsukura Y, Boehm C, Valdevit A, Kambic H, Davros W, Powell K, Easley K (2003) Spine fusion using cell matrix composites enriched in bone marrow-derived cells. Clin Orth Relat Res 407:102–118

    Google Scholar 

  75. Nade S, Armstrong L, McCartney E, Baggaley B (1983) Osteogenesis after bone and bone marrow transplantation. The ability of ceramic materials to sustain osteogenesis from transplanted bone marrow cells: preliminary studies. Clin Orthop Relat Res 181:255–263

    Google Scholar 

  76. National Health and Medical Research Council (2009) NHMRC levels of evidence and grades for recommendations for developers of guidelines. www.nhmrc.gov.au. Accessed 8 June 2011

  77. Noth U, Rackwitz L, Steinert AF, Tuan RS (2010) Cell delivery therapeutics for musculoskeletal regeneration. Advanced Drug Delivery Rev 62:765–783

    Google Scholar 

  78. O’Brien JP, Dawson MH, Heard CW, Momberger G, Speck G, Weatherly CR (1986) Simultaneous combined anterior and posterior fusion. A surgical solution for failed spinal surgery with a brief review of the first 150 patients. Clin Orthop Relat Res 203:191–195

    Google Scholar 

  79. Oakes DA, Lieberman JR (2000) Osteoinductive applications of regional gene therapy: ex vivo gene transfer. Clin Orthop Relat Res 379 (Suppl):S101–112

    Google Scholar 

  80. Obremskey WT, Marotta JS, Yaszemski MJ, Churchill LR, Boden SD, Dirschl DR (2007) Symposium. The introduction of biologics in orthopaedics: issues of cost, commercialism, and ethics. J Bone Joint Surg Am 89:1641–1649

    PubMed  Google Scholar 

  81. Oskouian RJ, Pelled G, Zilberman Y, Tal Y, Gazit Z, Gazit D (2006) Novel, injectable, genetically engineered stem cell-based system for anterior spinal fusion (abstract). Mol Ther 13:S173–S174

    Google Scholar 

  82. Papavero L, Zwonitzer R, Burkard I, Klose K, Herrmann H-D (2002) A composite bone graft substitute for anterior cervical fusion: assessment of osseointegration by quantitative computed tomography. Spine 27:1037–1043

    PubMed  Google Scholar 

  83. Park H-W, Lee J-K, Moon S-J, Seo S-K, Lee J-H, Kim S-H (2009) The efficacy of the synthetic interbody cage and Grafton for anterior cervical fusion. Spine 34:E591–595

    PubMed  Google Scholar 

  84. Pitzen T, Kiefer R, Munchen D, Barbier D, Reith W, Steudel WI (2006) Filling a cervical spine cage with local autograft: change of bone density and assessment of bony fusion. Zentralblatt fur Neurochirurgie 67:8–13

    CAS  PubMed  Google Scholar 

  85. Polly DW Jr, Ackerman SJ, Shaffrey CI, Ogilvie JW, Wang JC, Stralka SW, Mafilios MS, Heim SE, Sandhu HS (2003) A cost analysis of bone morphogenetic protein versus autogenous iliac crest bone graft in single-level anterior lumbar fusion. Orthopedics 26:1027–1037

    PubMed  Google Scholar 

  86. Poynton AR, Lane JM (2002) Safety profile for the clinical use of bone morphogenetic proteins in the spine. Spine 27:S40–48

    PubMed  Google Scholar 

  87. Pradhan BB, Bae HW, Dawson EG, Patel VV, Delamarter RB (2006) Graft resorption with the use of bone morphogenetic protein: lessons from anterior lumbar interbody fusion using femoral ring allografts and recombinant human bone morphogenetic protein-2. Spine 31:E277–284

    PubMed  Google Scholar 

  88. Putney E, Blumberg K (2012) The effect of mesenchymal stem cell allograft on cervical and lumbar spinal fusion (abstract). Annual Meeting of the American Osteopathic Academy of Orthopedics, Colorado

  89. Putzier M, Strube P, Funk JF, Gross C, Monig H-J, Perka C, Pruss A (2009) Allogenic versus autologous cancellous bone in lumbar segmental spondylodesis: a randomized prospective study. Eur Spine J 18:687–695

    PubMed Central  PubMed  Google Scholar 

  90. Ray WZ, Wright NM (2009) Anterior cervical arthrodesis using an osteoconductive scaffold: the use of beta-tricalcium phosphate with local bone marrow aspirate in over 100 patients. SAS J 3:114–117

    Google Scholar 

  91. Rengachary SS (2002) Bone morphogenetic proteins: basic concepts. Neurosurg Focus 13:e2

    Google Scholar 

  92. Riew KD, Lou J, Wright NM, Cheng S-L, Bae KT, Avioli LV (2003) Thoracoscopic intradiscal spine fusion using a minimally invasive gene-therapy technique. J Bone Joint SurgAm 85-A:866–871

    Google Scholar 

  93. Robinson RA, Smith GW (1955) Anterolateral cervical disc removal and interbody fusion for cervical disc syndrome. Bull Johns Hopkins Hosp 96:223–224

    Google Scholar 

  94. Ryan JM, Barry FP, Murphy JM, Mahon BP (2005) Mesenchymal stem cells avoid allogeneic rejection. J Inflammation 2:8

    Google Scholar 

  95. Samartzis D, Shen FH, Goldberg EJ, An HS (2005) Is autograft the gold standard in achieving radiographic fusion in one-level anterior cervical discectomy and fusion with rigid anterior plate fixation? Spine 30:1756–1761

    PubMed  Google Scholar 

  96. Sarwat AM, O’Brien JP, Renton P, Sutcliffe JC (2001) The use of allograft (and avoidance of autograft) in anterior lumbar interbody fusion: a critical analysis. Eur Spine J 10:237–241

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Schaffler MB, Burr DB (1988) Stiffness of compact bone: effects of porosity and density. J Biomech 21:13–16

    CAS  PubMed  Google Scholar 

  98. Schultz A (1987) Loads on the lumbar spine. In: Jason MIV (ed) The lumbar spine and back pain. Churchill Livingstone, Edinburgh, pp 204–214

    Google Scholar 

  99. Schwartz CE, Martha JF, Kowalski P, Wang DA, Bode R, Li L, Kim DH (2009) Prospective evaluation of chronic pain associated with posterior autologous iliac crest bone graft harvest and its effect on postoperative outcome. Health Qual Life Outcomes 7:49

    PubMed Central  PubMed  Google Scholar 

  100. Shad A, Leach JCD, Teddy PJ, Cadoux-Hudson TAD (2005) Use of the Solis cage and local autologous bone graft for anterior cervical discectomy and fusion: early technical experience. J Neurosurg Spine 2:116–122

    PubMed  Google Scholar 

  101. Shields LBE, Raque GH, Glassman SD, Campbell M, Vitaz T, Harpring J, Shields CB (2006) Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion. Spine 31:542–547

    PubMed  Google Scholar 

  102. Shors EC (2003) The development of coralline porous ceramic bone. In: Laurencin CT (ed) Bone graft substitutes. ASTM International, West Conshohocken, pp 271–288

    Google Scholar 

  103. Silber JS, Anderson DG, Daffner SD, Brislin BT, Leland JM, Hilibrand AS, Vaccaro AR, Albert TJ (2003) Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion. Spine 28:134–139

    PubMed  Google Scholar 

  104. Smucker JD, Rhee JM, Singh K, Yoon ST, Heller JG (2006) Increased swelling complications associated with off-label usage of rhBMP-2 in the anterior cervical spine. Spine 31:2813–2819

    PubMed  Google Scholar 

  105. Stauffer RN, Coventry MB (1972) Anterior interbody lumbar spine fusion. Analysis of Mayo Clinic series. J Bone Joint Surg Am 54:756–768

    CAS  PubMed  Google Scholar 

  106. Suchomel P, Barsa P, Buchvald P, Svobodnik A, Vanickova E (2004) Autologous versus allogenic bone grafts in instrumented anterior cervical discectomy and fusion: a prospective study with respect to bone union pattern. Eur Spine J 13:510–515

    PubMed Central  PubMed  Google Scholar 

  107. Thalgott JS, Fogarty ME, Giuffre JM, Christenson SD, Epstein AK, Aprill C (2009) A prospective, randomized, blinded, single-site study to evaluate the clinical and radiographic differences between frozen and freeze-dried allograft when used as part of a circumferential anterior lumbar interbody fusion procedure. Spine 34:1251–1256

    PubMed  Google Scholar 

  108. Thalgott JS, Giuffre JM, Klezl Z, Timlin M (2002) Anterior lumbar interbody fusion with titanium mesh cages, coralline hydroxyapatite, and demineralized bone matrix as part of a circumferential fusion. Spine J: Official Journal of the North American Spine Society 2:63–69

    Google Scholar 

  109. Thalgott JS, Klezl Z, Timlin M, Giuffre JM (2002) Anterior lumbar interbody fusion with processed sea coral (coralline hydroxyapatite) as part of a circumferential fusion. Spine 27:E518–E525, discussion E526–517

    PubMed  Google Scholar 

  110. Thalgott JS, Xiongsheng C, Giuffre JM (2003) Single stage anterior cervical reconstruction with titanium mesh cages, local bone graft, and anterior plating. Spine J: Official Journal of the North American Spine Society 3:294–300

    Google Scholar 

  111. Thawani JP, Wang AC, Than KD, Lin C-Y, La Marca F, Park P (2010) Bone morphogenetic proteins and cancer: review of the literature. Neurosurgery 66:233–246, discussion 246

    PubMed  Google Scholar 

  112. Topuz K, Colak A, Kaya S, Simsek H, Kutlay M, Demircan MN, Velioglu M (2009) Two-level contiguous cervical disc disease treated with peek cages packed with demineralized bone matrix: results of 3-year follow-up. Eur Spine J 18:238–243

    PubMed Central  PubMed  Google Scholar 

  113. Toth JM, Boden SD, Burkus JK, Badura JM, Peckham SM, McKay WF (2009) Short-term osteoclastic activity induced by locally high concentrations of recombinant human bone morphogenetic protein-2 in a cancellous bone environment. Spine 34:539–550

    PubMed  Google Scholar 

  114. Tumialan LM, Pan J, Rodts GE, Mummaneni PV (2008) The safety and efficacy of anterior cervical discectomy and fusion with polyetheretherketone spacer and recombinant human bone morphogenetic protein-2: a review of 200 patients. J Neurosurg Spine 8:529–535

    PubMed  Google Scholar 

  115. Urist MR (1965) Bone: formation by autoinduction. Science 150:893–899

    CAS  PubMed  Google Scholar 

  116. Vaccaro AR, Lawrence JP, Patel T, Katz LD, Anderson DG, Fischgrund JS, Krop J, Fehlings MG, Wong D (2008) The safety and efficacy of OP-1 (rhBMP-7) as a replacement for iliac crest autograft in posterolateral lumbar arthrodesis: a long-term (>4 years) pivotal study. Spine 33:2850–2862

    PubMed  Google Scholar 

  117. Vaidya R, Carp J, Sethi A, Bartol S, Craig J, Les CM (2007) Complications of anterior cervical discectomy and fusion using recombinant human bone morphogenetic protein-2. Eur Spine J 16:1257–1265

    PubMed Central  PubMed  Google Scholar 

  118. Vaidya R, Weir R, Sethi A, Meisterling S, Hakeos W, Wybo CD (2007) Interbody fusion with allograft and rhBMP-2 leads to consistent fusion but early subsidence. J Bone Joint Surg Br 89:342–345

    CAS  PubMed  Google Scholar 

  119. van den Bent MJ, Oosting J, Wouda EJ, van Acker RE, Ansink BJ, Braakman R, van den Bent MJ, Oosting J, Wouda EJ, van Acker RE, Ansink BJ, Braakman R (1996) Anterior cervical discectomy with or without fusion with acrylate. A randomized trial. Spine 21:834–839, discussion 840

    PubMed  Google Scholar 

  120. Wang JC, Kanim LEA, Yoo S, Campbell PA, Berk AJ, Lieberman JR (2003) Effect of regional gene therapy with bone morphogenetic protein-2-producing bone marrow cells on spinal fusion in rats. J Bone Joint Surg Am 85-A:905–911 (Erratum appears in J Bone Joint Surg Am. 2003 Sep;85-A(9):1801)

    PubMed  Google Scholar 

  121. Wang JC, Zou D, Yuan H, Yoo J (1998) A biomechanical evaluation of graft loading characteristics for anterior cervical discectomy and fusion. A comparison of traditional and reverse grafting techniques. Spine 23:2450–2454

    CAS  PubMed  Google Scholar 

  122. Welch WC, Gerszten P, Sherman J, Ullrich Jr P, Latus G, Macenski MM (2002) A prospective randomized study of interbody fusion: bone substitute or autograft (abstract). http://abstracts.neurosurgeon.org/view.php?id=9077. Accessed 6 January 2012

  123. Whitmore RG, Schwartz JS, Simmons S, Stein SC, Ghogawala Z (2012) Performing a cost analysis in spine outcomes research: comparing ventral and dorsal approaches for cervical spondylotic myelopathy. Neurosurgery 70:860–867, discussion 867

    PubMed  Google Scholar 

  124. Wittenberg RH, Moeller J, Shea M, White AA 3rd, Hayes WC (1990) Compressive strength of autologous and allogenous bone grafts for thoracolumbar and cervical spine fusion. Spine 15:1073–1078

    CAS  PubMed  Google Scholar 

  125. Yamada S, Heymann D, Bouler JM, Daculsi G (1997) Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/beta-tricalcium phosphate ratios. Biomaterials 18:1037–1041

    CAS  PubMed  Google Scholar 

  126. Zdeblick TA, Ducker TB (1991) The use of freeze-dried allograft bone for anterior cervical fusions. Spine 16:726–729

    CAS  PubMed  Google Scholar 

  127. Zhang Y, Homsi D, Gates K, Oakes K, Sutherland V, Wolfinbarger L Jr (1994) A comprehensive study of physical parameters, biomechanical properties, and statistical correlations of iliac crest bone wedges used in spinal fusion surgery. IV. Effect of gamma irradiation on mechanical and material properties. Spine 19:304–308

    CAS  PubMed  Google Scholar 

  128. Zigler J, Delamarter R, Spivak JM, Linovitz RJ, Danielson GO 3rd, Haider TT, Cammisa F, Zuchermann J, Balderston R, Kitchel S, Foley K, Watkins R, Bradford D, Yue J, Yuan H, Herkowitz H, Geiger D, Bendo J, Peppers T, Sachs B, Girardi F, Kropf M, Goldstein J (2007) Results of the prospective, randomized, multicenter Food and Drug Administration investigational device exemption study of the ProDisc-L total disc replacement versus circumferential fusion for the treatment of 1-level degenerative disc disease. Spine 32:1155–1162, discussion 1163

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Jasper Mobbs.

Additional information

Comments

Richard Lochhead, Phoenix, USA

Chau et al. submit a review article entitled “Current status of bone graft options for anterior interbody fusion of the cervical and lumbar spine.” The authors present a comprehensive review of bone graft options in anterior spinal surgery. Despite a lack of original content, this article has good clinical application, can help direct appropriate treatment, and may provide direction for future research and development. The best bone graft option is not known despite thousands of anterior spinal fusions performed annually. This article independently summarizes each graft and includes a literature review, basic scientific evidence, and financial cost for each graft option. The authors should be congratulated for their work.

Bernhard Meyer und Sandro Krieg, Munich, Germany

In this review, Chau et al. give an overview on anterior interbody fusion of the cervical and lumbar spine by paying special attention to the different options for bone grafts. Due to well-known problems at the donor site, the use of autografts is declining parallel to the expanding variety of alternative options including osteogenic, osteoconductive, osteoinductive, and osteopromotive grafts. Noteworthy is that almost all studies reported a considerably high rate of fusion, which is nicely outlined in the overview tables. Moreover, besides the very important information on the underlying biology of the different graft types, data are provided on the existing level of evidence. In conclusion, this review offers highly useful data for every spinal surgeon, and its publication is therefore welcomed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chau, A.M.T., Xu, L.L., Wong, J.HY. et al. Current status of bone graft options for anterior interbody fusion of the cervical and lumbar spine. Neurosurg Rev 37, 23–37 (2014). https://doi.org/10.1007/s10143-013-0483-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-013-0483-9

Keywords

Navigation