Skip to main content
Log in

Multi-agent system application for music features extraction, meta-classification and context analysis

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

Manual music classification is a slow and costly process. Most recent works about music auto-classification such as genre or emotions make this process easier, but are focused on a single task. In this work, a music multi-classification platform is presented. This platform is based on multi-agent systems, allowing to distribute the extraction, classification, and service tasks among agents. The platform performs a musical genre and emotional classification and provides context information of songs from social networks such as Twitter and Last.fm. The methods chosen based on meta-classifiers to perform single-label and multi-label classification obtain great results. In the case of multi-label classification, better results are obtained than in other previous works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bajo J, Corchado JM (2009) Thomas: practical applications of agents and multiagent systems. Springer, Berlin, pp 512–513. https://doi.org/10.1007/978-3-642-02478-8_64

    Google Scholar 

  2. Baniya BK, Ghimire D, Lee J (2015) Automatic music genre classification using timbral texture and rhythmic content features. In: International conference on advanced communication technology, ICACT, vol 2015-August. IEEE, pp 434–443. https://doi.org/10.1109/ICACT.2015.7224907

  3. Bellifemine F, Poggi A, Rimassa G (2001) Developing multi-agent systems with JADE. Springer, Berlin, pp 89–103. https://doi.org/10.1007/3-540-44631-1_7

    Google Scholar 

  4. Bergstra J, Casagrande N, Erhan D, Eck D, Kégl B (2006) Aggregate features and ADABOOST for music classification. Mach Learn 65(2–3):473–484. https://doi.org/10.1007/s10994-006-9019-7

    Article  Google Scholar 

  5. Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140. https://doi.org/10.1023/A:1018054314350

    Article  MATH  Google Scholar 

  6. Chew E (2000) Towards a mathematical model of tonality. Ph.D. Thesis. https://dspace.mit.edu/handle/1721.1/9139

  7. Choi K, Fazekas G, Sandler M, Cho K (2017) Convolutional recurrent neural networks for music classification. In: 2017 IEEE International conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 2392–2396. https://doi.org/10.1109/ICASSP.2017.7952585

  8. Cohn R (1997) Neo-riemannian operations, parsimonious trichords, and their tonnetz representations. J Music Theory 41(1):1. https://doi.org/10.2307/843761

    Article  Google Scholar 

  9. Freund Y, Schapire RE (1999) A short introduction to boosting. J Jpn Soc Artif Intell 14(5):771–780

    Google Scholar 

  10. Gómez LM, Cáceres MN (2018) Applying data mining for sentiment analysis in music. Springer, Cham, pp 198–205. https://doi.org/10.1007/978-3-319-61578-3_20

    Google Scholar 

  11. Gregori ME, Cámara JP, Bada GA (2006) A jabber-based multi-agent system platform. In: Proceedings of the fifth international joint conference on Autonomous agents and multiagent systems: AAMAS ’06. ACM Press, New York, p 1282. https://doi.org/10.1145/1160633.1160866

  12. Harte C, Sandler M, Gasser M (2006) Detecting harmonic change in musical audio. In: Proceedings of the 1st ACM workshop on audio and music computing multimedia AMCMM 06 C(06):21. https://doi.org/10.1145/1178723.1178727

  13. Hauger D, Schedl M (2014) Exploring geospatial music listening patterns in microblog data. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) vol 8382, pp 133–146. https://doi.org/10.1007/978-3-319-12093-5_7

    Google Scholar 

  14. Hong J, Deng H, Yan Q (2008) Tag-based artist similarity and genre classification. In: 2008 IEEE International symposium on knowledge acquisition and modeling workshop proceedings, KAM 2008. IEEE, pp 628–631. https://doi.org/10.1109/KAMW.2008.4810567

  15. Hu X, Choi K, Downie JS (2017) A framework for evaluating multimodal music mood classification. J Assoc Inf Sci Technol 68(2):273–285. https://doi.org/10.1002/asi.23649

    Article  Google Scholar 

  16. Hu X, Yang Y (2017) The mood of Chinese Pop music: representation and recognition. J Assoc Inf Sci Technol 68(8):1899–1910. https://doi.org/10.1002/asi.23813

    Article  Google Scholar 

  17. Jiang D-N, Lu L, Zhang H-J, Tao J-H, Cai L-H (2002) Music type classification by spectral contrast feature. In: Proceedings of the IEEE International conference on multimedia and expo. IEEE, pp 113–116. https://doi.org/10.1109/ICME.2002.1035731

  18. Kim Y, Suh B, Lee K (2014) #Nowplaying the future billboard. In: Proceedings of the first international workshop on Social media retrieval and analysis—SoMeRA ’14. ACM Press, New York, pp 51–56. https://doi.org/10.1145/2632188.2632206

  19. Li T, Ogihara M, Li Q (2003) A comparative study on content-based music genre classification. In: Proceedings of the 26th annual international ACM SIGIR conference on research and development in information retrieval—SIGIR ’03. ACM Press, New York, p 282. https://doi.org/10.1145/860435.860487

  20. Luaces O, Díez J, Barranquero J, Del Coz JJ, Bahamonde A (2012) Binary relevance efficacy for multilabel classification. Prog Artif Intell 1:303–313. https://doi.org/10.1007/s13748-012-0030-x

    Article  Google Scholar 

  21. Lunney GS (2014) Copyright on the internet: consumer copying and collectives. In: Frankel S, Gervais D (eds) The evolution and equilibrium of copyright in the digital age. Cambridge University Press, Cambridge, pp 285–311. https://doi.org/10.1017/CBO9781107477179.019

    Chapter  Google Scholar 

  22. Mehrabian A (1997) Analysis of affiliation-related traits in terms of the PAD temperament model. J Psychol 131(1):101–117. https://doi.org/10.1080/00223989709603508

    Article  Google Scholar 

  23. Nanni L, Costa YM, Lumini A, Kim MY, Baek SR (2016) Combining visual and acoustic features for music genre classification. Expert Syst Appl 45:108–117. https://doi.org/10.1016/j.eswa.2015.09.018

    Article  Google Scholar 

  24. Ortony A, Clore GL, Collins A (1988) The cognitive structure of emotions. Cambridge University Press. https://books.google.es/books/about/The_Cognitive_Structure_of_Emotions.html?id=dA3JEEAp6TsC&redir_esc=y

  25. Poria S, Gelbukh A, Hussain A, Bandyopadhyay S, Howard N (2013) Music genre classification: a semi-supervised approach. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), vol 7914 LNCS, pp 254–263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38989-4_26

    Google Scholar 

  26. Read J, Pfahringer B, Holmes G, Frank E, Brodley Read CJ, Pfahringer B, Holmes G, Frank E (2011) Classifier chains for multi-label classification. Mach Learn. https://doi.org/10.1007/s10994-011-5256-5

    Article  MathSciNet  Google Scholar 

  27. Rincon JA, Bajo J, Fernandez A, Julian V, Carrascosa C (2016) Using emotions for the development of human-agent societies. Front Inf Technol Electron Eng 17(4):325–337. https://doi.org/10.1631/FITEE.1500343

    Article  Google Scholar 

  28. Rincon JA, Julian V, Carrascosa C (2015) An emotional-based hybrid application for human-agent societies. Springer, Cham, pp 203–213. https://doi.org/10.1007/978-3-319-19719-7_18

    Google Scholar 

  29. Schapire RE (2013) Explaining AdaBoost. In: Empirical inference. Springer, Berlin, pp 37–52. https://doi.org/10.1007/978-3-642-41136-6_5

    Chapter  Google Scholar 

  30. Schedl M, Hauger D, Urbano J (2014) Harvesting microblogs for contextual music similarity estimation: a co-occurrence-based framework. Multimed Syst 20(6):693–705. https://doi.org/10.1007/s00530-013-0321-5

    Article  Google Scholar 

  31. Seo JS, Lee S (2011) Higher-order moments for musical genre classification. https://doi.org/10.1016/j.sigpro.2011.03.019

    Article  Google Scholar 

  32. Tellegen A, Watson D, Clark LA (1999) On the dimensional and hierarchical structure of affect. Psychol Sci 10(4):297–303. https://doi.org/10.1111/1467-9280.00157

    Article  Google Scholar 

  33. Theodoridis S, Chellappa R (2013) Academic Press library in signal processing: communications and radar signal processing. Academic Press. http://books.google.co.uk/books?id=dnbPoJfkIVkC

  34. Trohidis K, Tsoumakas G, Kalliris G, Vlahavas I (2011) Multi-label classification of music by emotion. EURASIP J Audio Speech Music Process 2011(1):4. https://doi.org/10.1186/1687-4722-2011-426793

    Article  Google Scholar 

  35. Tsoumakas G, Vlahavas I, (2007) Random k-labelsets: an ensemble method for multilabel classification. In: Kok JN, Koronacki J, Mantaras RL, Matwin S, Mladenič D, Skowron A (eds) Machine learning: ECML 2007. ECML, (2007) Lecture Notes in Computer Science, vol 4701. Springer, Berlin, Heidelberg

  36. Tzanetakis G, Essl G, Cook P Automatic musical genre classification of audio signals. http://ismir2001.ismir.net/pdf/tzanetakis.pdf

  37. Yang KC, Huang CH, Yang C, Lin YS (2017) A study on music mood detection in online digital music database. In: PACIS 2017 Proceedings. http://aisel.aisnet.org/pacis2017/144

  38. Zato C, Villarrubia G, Sánchez A, Barri I, Rubión E, Fernández A, Rebate C, Cabo JA, Álamos T, Sanz J, Seco J, Bajo J, Corchado JM AISC 151—PANGEA—Platform for automatic construction of organizations of intelligent agents. AISC 151:229–239. https://link.springer.com/content/pdf/10.1007/978-3-642-28765-7_27.pdf

  39. Zheng F, Zhang G, Song Z (2001) Comparison of different implementations of MFCC. J Comput Sci Technol 16(6):582–589. https://doi.org/10.1007/BF02943243

    Article  MATH  Google Scholar 

  40. Zottesso RHD, Costa YMG, Bertolini D (2016) Music genre classification using visual features with feature selection. In: 2016 35th international conference of the Chilean computer science society (SCCC), pp 1–6. IEEE. https://doi.org/10.1109/SCCC.2016.7836004. http://ieeexplore.ieee.org/document/7836004/

Download references

Acknowledgements

This work was supported by the Spanish Ministry, Ministerio de Economía y Competitividad and FEDER funds. Project. SURF: Intelligent System for integrated and sustainable management of urban fleets TIN2015-65515-C4-3-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Pérez-Marcos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Marcos, J., Jiménez-Bravo, D.M., De Paz, J.F. et al. Multi-agent system application for music features extraction, meta-classification and context analysis. Knowl Inf Syst 62, 401–422 (2020). https://doi.org/10.1007/s10115-018-1319-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-018-1319-2

Keywords

Navigation