Skip to main content
Log in

P-distances, q-distances and a generalized Ekeland’s variational principle in uniform spaces

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

In this paper, we attempt to give a unified approach to the existing several versions of Ekeland’s variational principle. In the framework of uniform spaces, we introduce p-distances and more generally, q-distances. Then we introduce a new type of completeness for uniform spaces, i.e., sequential completeness with respect to a q-distance (particularly, a p-distance), which is a very extensive concept of completeness. By using q-distances and the new type of completeness, we prove a generalized Takahashi’s nonconvex minimization theorem, a generalized Ekeland’s variational principle and a generalized Caristi’s fixed point theorem. Moreover, we show that the above three theorems are equivalent to each other. From the generalized Ekeland’s variational principle, we deduce a number of particular versions of Ekeland’s principle, which include many known versions of the principle and their improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ekeland, I.: Sur les problèmes variationnels. C. R. Acad. Sci. Paris, 275, 1057–1059 (1972)

    MATH  MathSciNet  Google Scholar 

  2. Aubin, J. P., Ekeland, I.: Applied Nonlinear Analysis, New York, Wiley, 1984

    MATH  Google Scholar 

  3. Ekeland, I.: On the variational principle. J. Math. Anal. Appl., 47, 324–353 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ekeland, I.: Nonconvex minimization problems. Bull. Amer. Math. Soc. (N.S.), 1, 443–474 (1979)

  5. Göpfert, A., Riahi, H., Tammer, C., et al.: Variational Methods in Partially Ordered Spaces, New York, Springer-Verlag, 2003

    MATH  Google Scholar 

  6. Takahashi, W.: Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000

    MATH  Google Scholar 

  7. Caristi, J.: Fixed point theorems for mappings satisfying inwardness conditions. Trans. Amer. Math. Soc., 215, 241–251 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  8. Takahashi, W.: Existence theorems generalizing fixed point theorems for multivalued mappings. In: Fixed Point Theory and Applications (M. A. Théra, J. B. Baillon Eds.), Pitman Research Notes in Math., Vol. 252, Longman Sci. Tech., Harlow, 1991, 397–406

    Google Scholar 

  9. Daneš, J.: A geometric theorem useful in nonlinear functional analysis. Boll. Un. Math. Ital., 6, 369–375 (1972)

    MATH  Google Scholar 

  10. Daneš, J.: Equivalence of some geometric and related results in nonlinear functional analysis. Comment. Math. Univ. Carolin., 26, 443–454 (1985)

    MATH  MathSciNet  Google Scholar 

  11. Penot, J. P.: The drop theorem, the petal theorem and Ekeland’s variational principle. Nonlinear Anal., 10, 813–822 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bosch, C., Garcıa, A., Garcıa, C. L.: An extension of Ekeland’s variational principle to locally complete spaces. J. Math. Anal. Appl., 328, 106–108 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chen, Y., Cho, Y. J., Yang, L.: Note on the results with lower semi-continuity. Bull. Korean Math. Soc., 39, 535–541 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chen, G. Y., Huang, X. X., Yang, X. Q.: Vector Optimization, Set-Valued and Variational Analysis, Berlin, Springer-Verlag, 2005

    MATH  Google Scholar 

  15. Cheng, L., Zhou, Y., Zhang, F.: Danes’ drop theorem in locally convex spaces. Proc. Amer. Math. Soc., 124, 3699–3702 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Fang, J. X.: The variational principle and fixed point theorems in certain topological spaces. J. Math. Anal. Appl., 202, 398–412 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. Georgiev, P. G.: The strong Ekeland variational principle, the strong drop theorem and applications. J. Math. Anal. Appl., 131, 1–21 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hamel, A. H.: Phelp’s lemma, Danes’ drop theorem and Ekeland’s principle in locally convex spaces. Proc. Amer. Math. Soc., 131, 3025–3038 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hamel, A. H.: Equivalents to Ekeland’s variational principle in uniform spaces. Nonlinear Anal., 62, 913–924 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hamel, A., Löhne, A.: A minimal point theorem in uniform spaces. In: R. P. Argaral, D. O’Regan, Nonlinear Analysis and Applications: To V. Lakshmikantham on his 80th Birthday, Kluwer Academic Publisher, vol. 1, 2003, pp. 577–593

  21. Isac, G.: Ekeland’s principle and nuclear cones: a geometrical aspect. Math. Comput. Modelling, 26, 111–116 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kada, O., Suzuki, T., Takahashi, W.: Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Math. Japon, 44, 381–391 (1996)

    MATH  MathSciNet  Google Scholar 

  23. Lin, L. J., Du, W. S.: Ekeland’s variational principle, minimax theorems and existence of nonconvex equilibria in complete metric spaces. J. Math. Anal. Appl., 323, 360–370 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lin, L. J., Du, W. S.: Some equivalent formulations of the generalized Ekeland’s variational principle and their applications. Nonlinear Anal., 67, 187–199 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lin, L. J., Du, W. S.: On maximal element theorems, variants of Ekeland’s variational principle and their applications. Nonlinear Anal., 68, 1246–1262 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Mizoguchi, N.: A generalization of Brønstedt’s results and its applications. Proc. Amer. Math. Soc., 108, 707–714 (1990)

    MATH  MathSciNet  Google Scholar 

  27. Oetti, W., Thera, M.: Equivalents of Ekeland’s principle. Bull. Austral. Math. Soc., 48, 385–392 (1993)

    Article  MathSciNet  Google Scholar 

  28. Park, S.: On generalizations of the Ekeland-type variational principle. Nonlinear Anal., 39, 881–889 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  29. Qiu, J. H.: Local completeness and dual local quasi-completeness. Proc. Amer. Math. Soc., 129, 1419–1425 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  30. Qiu, J. H.: Ekeland’s variational principle in locally complete spaces. Math. Nachr., 257, 55–58 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  31. Qiu, J. H.: Local completeness, drop theorem and Ekeland’s variational principle. J. Math. Anal. Appl., 311, 23–39 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  32. Qiu, J. H.: Ekeland’s variational principle in Fréchet spaces and the density of extremal points. Studia Math., 168, 81–94 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  33. Qiu, J. H., Rolewicz, S.: Local completeness of locally pseudoconvex spaces and Borwein-Preiss variational principle. Studia Math., 183, 99–115 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  34. Qiu, J. H., Rolewicz, S.: Ekeland’s variational principle in locally p-convex spaces and related results. Studia Math., 186, 219–235 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  35. Qiu, J. H.: A generalized Ekeland vector variational principle and its applications in optimization. Nonlinear Anal., 71, 4705–4717 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  36. Wu, Z.: Equivalent formulations of Ekeland’s variational principle. Nonlinear Anal., 55, 609–615 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  37. Zheng, X. Y.: Drop theorem in topological vector spaces (in Chinese). Chinese Ann. Math. Ser. A, 21, 141–148 (2000)

    MATH  Google Scholar 

  38. Pérez Carreras, P., Bonet, J.: Barrelled Locally Convex Spaces, Amsterdam, North-Holland, 1987

    MATH  Google Scholar 

  39. Kelly, J. L.: General Topology, New York, Springer-Verlag, 1953

    Google Scholar 

  40. Köthe, G.: Topological Vector Spaces I, Berlin, Springer-Verlag, 1969

    Book  MATH  Google Scholar 

  41. Horváth, J.: Topological Vector Spaces and Distributions, Vol. 1, Addison-Wesley, Reading, MA, 1966

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Hui Qiu.

Additional information

Supported by National Natural Science Foundation of China (Grant No. 10871141)

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, J.H., He, F. P-distances, q-distances and a generalized Ekeland’s variational principle in uniform spaces. Acta. Math. Sin.-English Ser. 28, 235–254 (2012). https://doi.org/10.1007/s10114-011-0629-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-011-0629-z

Keywords

MR(2000) Subject Classification

Navigation