Skip to main content

Advertisement

Log in

Interior projection-like methods for monotone variational inequalities

  • Published:
Mathematical Programming Submit manuscript

Abstract

We propose new interior projection type methods for solving monotone variational inequalities. The methods can be viewed as a natural extension of the extragradient and hyperplane projection algorithms, and are based on using non Euclidean projection-like maps. We prove global convergence results and establish rate of convergence estimates. The projection-like maps are given by analytical formulas for standard constraints such as box, simplex, and conic type constraints, and generate interior trajectories. We then demonstrate that within an appropriate primal-dual variational inequality framework, the proposed algorithms can be applied to general convex constraints resulting in methods which at each iteration entail only explicit formulas and do not require the solution of any convex optimization problem. As a consequence, the algorithms are easy to implement, with low computational cost, and naturally lead to decomposition schemes for problems with a separable structure. This is illustrated through examples for convex programming, convex-concave saddle point problems and semidefinite programming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Auslender, A.: Optimisation: Méthodes Numériques. Masson, Paris, 1976

  2. Auslender, A., Teboulle, M., Ben Tiba, S.: Interior Proximal and Multiplier Methods based on Second Order Homogeneous Kernels. Mathematics of Operations Research 24, 645–668 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Auslender, A., Teboulle, M.: Asymptotic Cones and Functions in Optimization and Variational Inequalities. Springer Monographs in Mathematics, Springer-Verlag New-York, 2002

  4. Auslender, A., Teboulle, M.: The Log-Quadratic proximal methodology in convex optimization algorithms and variational inequalities. In: P. Daniel, F. Gianessi, A. Maugeri (eds.), Equilibrium problems and variational models, Vol. 68, Nonconvex optimization and its applications, Kluwer Academic Press, 2003

  5. Auslender, A., Teboulle, M.: A unified framewok for interior gradient/subgradient and proximal methods in convex optimization. Preprint, February 2003. Submitted for publication

  6. Beck, A., Teboulle, M.: Mirror descent and nonlinear projected subgradient methods for convex optimization. Oper. Res. Lett. 31, 167–175 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bruck, R.D.: An iterative solution of a variational inequality for certain monotone operators in Hilbert space. Bulletin of The American Math. Soc. 81, 890–892 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen, G., Teboulle, M.: Convergence analysis of a proximal-like minimization algorithm using Bregman functions. SIAM J. Optim. 3, 538–543 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Doljanski, M., Teboulle, M.: An interior proximal algorithm and the exponential multiplier method for semidefinite programming. SIAM J. Optim. 9, 1–13 (1998)

    Article  Google Scholar 

  10. Facchinei, F., Pang, J.S.: Finite-dimensional variational inequalities and complementarity problems. Vol. I and II. Springer Series in Operations Research. Springer-Verlag, New York, 2003

  11. He, B.S., Liao, L.Z.: Improvements of some projection methods for monotone nonlinear variational inequalities. J. Optim. Theory and Appl. 112, 111–128 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Khobotov, E.N.: A modification of the extragradient method for the solution of variational inequalities and some optimization problems. USSR Comput. Math. and Math. Phys. 27, 120–127 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  13. Konnov, I.V.: Combined relaxation methods for finding equilbrium points and solving related problems. Russian Mathematics 37, 46–53 (1993)

    MathSciNet  Google Scholar 

  14. Konnov, I.V.: Combined relaxation methods for variational inequalities. Springer Verlag, Berlin, 2001

  15. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekonomie. i Mathematik Metody 12, 746–756 (1976). [english translation: Matecon 13, 35–49 (1977)]

    Google Scholar 

  16. Nemirovsky, A.: Prox-method with rate of convergence O(1/k) for smooth variational inequalities and saddle point problems. Draft of 30/01/03

  17. Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72, 383–390 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  18. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton, NJ, 1970

  19. Rockafellar, R.T.: Monotone operators and augmented Lagrangians in nonlinear programming. In: O. L. Mangasarian, et al. (eds.), “Nonlinear Programming 3”, Academic Press, New York, 1978, pp. 1–25

  20. Rockafellar, R.T.: Linear-Quadratic Programming and Optimal Control. SIAM J. Control and Optim. 25, 781–814 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  21. Rockafellar, R.T., B Wets, R.J.: Variational Analysis. Springer Verlag, New York, 1998

  22. Rockafellar, R.T., B Wets, R.J.: A Lagrangian finite generatioon technique for solving linear-quadratic problems in stochastic programming. Math. Programming Studies 28, 63–93 (1986)

    MATH  MathSciNet  Google Scholar 

  23. Sibony, M.: Methodes itératives pour les equations et inequations aux dérivees partielles non linéaires de type monotone. Calcolo 7, 65–183 (1970)

    MATH  MathSciNet  Google Scholar 

  24. Teboulle, M.: Convergence of Proximal-like Algorithms. SIAM J. Optim. 7, 1069–1083 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Tseng, P.: Alternating projection-proximal methods for convex programming and variational inequalities. SIAM J. Optim. 7, 951–965 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  26. Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38 (2), 431–446 (2000)

    Article  MathSciNet  Google Scholar 

  27. Weisstein, E.W.: Cubic Equation. From MathWorld–A Wolfram Web Resource, http://mathworld.wolfram.com/CubicEquation.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Teboulle.

Additional information

The work of this author was partially supported by the United States–Israel Binational Science Foundation, BSF Grant No. 2002-2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auslender, A., Teboulle, M. Interior projection-like methods for monotone variational inequalities. Math. Program. 104, 39–68 (2005). https://doi.org/10.1007/s10107-004-0568-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-004-0568-x

Keywords

Navigation