Skip to main content

Advertisement

Log in

Upregulation of IFN-γ and IL-12 is associated with a milder form of hantavirus hemorrhagic fever with renal syndrome

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Hantavirus hemorrhagic fever with renal syndrome (HFRS) is a zoonotic disease characterized by acute onset, fever, malaise, and back pain. As the disease progresses, hemorrhagic disturbances and kidney dysfunctions predominate. The examination of tissue collected postmortem supports the premise that virus replication is not responsible for this pathology; therefore, it is widely believed that virus-induced immune responses lead to the clinical manifestations associated with HFRS. The overproduction of inflammatory cytokines is commonly reported in subjects with HFRS and has given rise to the hypothesis that a so-called “cytokine storm” may play a pivotal role in the pathogenesis of this disease. Currently, supportive care remains the only effective treatment for HFRS. Our data show that serum levels of interferon (IFN)-γ, interleukin (IL)-10, CCL2, and IL-12 are upregulated in HFRS cases when compared to healthy controls and the level of upregulation is dependent on the phase and severity of the disease. Furthermore, we observed an association between the mild form of the disease and elevated serum levels of IFN-γ and IL-12. Collectively, these observations suggest that the administration of exogenous IFN-γ and IL-12 may provide antiviral benefits for the treatment of HFRS and, thus, warrants further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mustonen J, Mäkelä S, Outinen T et al (2013) The pathogenesis of nephropathia epidemica: new knowledge and unanswered questions. Antivir Res 100(3):589–604

    Article  CAS  PubMed  Google Scholar 

  2. Settergren B, Juto P, Trollfors B et al (1989) Clinical characteristics of nephropathia epidemica in Sweden: prospective study of 74 cases. Rev Infect Dis 11(6):921–927

    Article  CAS  PubMed  Google Scholar 

  3. Rasche FM, Uhel B, Krüger DH et al (2004) Thrombocytopenia and acute renal failure in puumala hantavirus infections. Emerg Infect Dis 10(8):1420–1425

    Article  PubMed  PubMed Central  Google Scholar 

  4. Radonić R, Gasparović V, Ivanović D et al (2003) Thrombotic thrombocytopenic purpura and hemorrhagic fever with renal syndrome: possible dilemma in differential diagnosis. Acta Med Croatica 57(5):433–436

    PubMed  Google Scholar 

  5. Takala A, Lähdevirta J, Jansson SE et al (2000) Systemic inflammation in hemorrhagic fever with renal syndrome correlates with hypotension and thrombocytopenia but not with renal injury. J Infect Dis 181(6):1964–1970

    Article  CAS  PubMed  Google Scholar 

  6. Huang C, Jin B, Wang M et al (1994) Hemorrhagic fever with renal syndrome: relationship between pathogenesis and cellular immunity. J Infect Dis 169(4):868–870

    Article  CAS  PubMed  Google Scholar 

  7. Tang YM, Yang WS, Zhang WB et al (1991) Localization and changes of hemorrhagic fever with renal syndrome virus in lymphocyte subpopulation. Chin Med J (Engl) 104(8):673–678

    CAS  Google Scholar 

  8. Zhang TM, Yang ZQ, Zhang MY et al (1993) Early analysis of viremia and clinical tests in patients with epidemic hemorrhagic fever. Chin Med J (Engl) 106(8):608–610

    CAS  Google Scholar 

  9. Duchin JS, Koster FT, Peters CJ et al (1994) Hantavirus pulmonary syndrome: a clinical description of 17 patients with a newly recognized disease. The Hantavirus Study Group. N Engl J Med 330(14):949–955

    Article  CAS  PubMed  Google Scholar 

  10. Outinen TK, Mäkelä SM, Ala-Houhala IO et al (2010) The severity of Puumala hantavirus induced nephropathia epidemica can be better evaluated using plasma interleukin-6 than C-reactive protein determinations. BMC Infect Dis 10:132

    Article  PubMed  PubMed Central  Google Scholar 

  11. Settergren B, Leschinskaya E, Zagidullin I et al (1991) Hemorrhagic fever with renal syndrome: comparison of clinical course in Sweden and in the Western Soviet Union. Scand J Infect Dis 23(5):549–552

    Article  CAS  PubMed  Google Scholar 

  12. Peco-Antić A, Popović-Rolović M, Gligić A et al (1992) Clinical characteristics of haemorrhagic fever with renal syndrome in children. Pediatr Nephrol 6(4):335–338

    Article  PubMed  Google Scholar 

  13. Sundberg E, Hultdin J, Nilsson S et al (2011) Evidence of disseminated intravascular coagulation in a hemorrhagic fever with renal syndrome-scoring models and severe illness. PLoS One 6(6):e21134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Settergren B (1991) Nephropathia epidemica (hemorrhagic fever with renal syndrome) in Scandinavia. Rev Infect Dis 13(4):736–744

    Article  CAS  PubMed  Google Scholar 

  15. Valtonen M, Kauppila M, Kotilainen P et al (1995) Four fatal cases of nephropathia epidemica. Scand J Infect Dis 27(5):515–517

    Article  CAS  PubMed  Google Scholar 

  16. Bren AF, Pavlovcic SK, Koselj M et al (1996) Acute renal failure due to hemorrhagic fever with renal syndrome. Ren Fail 18(4):635–638

    Article  CAS  PubMed  Google Scholar 

  17. Mäkelä S, Ala-Houhala I, Mustonen J et al (2000) Renal function and blood pressure five years after puumala virus-induced nephropathy. Kidney Int 58(4):1711–1718

    Article  PubMed  Google Scholar 

  18. Garanina SB, Platonov AE, Zhuravlev VI et al (2009) Genetic diversity and geographic distribution of hantaviruses in Russia. Zoonoses Public Health 56(6–7):297–309

    Article  CAS  PubMed  Google Scholar 

  19. Yanagihara R, Silverman DJ (1990) Experimental infection of human vascular endothelial cells by pathogenic and nonpathogenic hantaviruses. Arch Virol 111(3–4):281–286

    Article  CAS  PubMed  Google Scholar 

  20. Temonen M, Mustonen J, Helin H et al (1996) Cytokines, adhesion molecules, and cellular infiltration in nephropathia epidemica kidneys: an immunohistochemical study. Clin Immunol Immunopathol 78(1):47–55

    Article  CAS  PubMed  Google Scholar 

  21. Markotić A, Dasić G, Gagro A et al (1999) Role of peripheral blood mononuclear cell (PBMC) phenotype changes in the pathogenesis of haemorrhagic fever with renal syndrome (HFRS). Clin Exp Immunol 115(2):329–334

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang M, Wang J, Zhu Y et al (2009) Cellular immune response to Hantaan virus nucleocapsid protein in the acute phase of hemorrhagic fever with renal syndrome: correlation with disease severity. J Infect Dis 199(2):188–195

    Article  CAS  PubMed  Google Scholar 

  23. Paakkala A, Mustonen J, Viander M et al (2000) Complement activation in nephropathia epidemica caused by puumala hantavirus. Clin Nephrol 53(6):424–431

    CAS  PubMed  Google Scholar 

  24. Liu YF, Yang SJ, Yan PS et al (1994) Characteristics of immunocomplex in autopsy tissues of hemorrhagic fever with renal syndrome. Chin Med J (Engl) 107(6):444–449

    CAS  Google Scholar 

  25. Saksida A, Wraber B, Avšič-Županc T (2011) Serum levels of inflammatory and regulatory cytokines in patients with hemorrhagic fever with renal syndrome. BMC Infect Dis 11:142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mäkelä S, Mustonen J, Ala-Houhala I et al (2004) Urinary excretion of interleukin-6 correlates with proteinuria in acute puumala hantavirus-induced nephritis. Am J Kidney Dis 43(5):809–816

    Article  PubMed  Google Scholar 

  27. Wang PZ, Li ZD, Yu HT et al (2012) Elevated serum concentrations of inflammatory cytokines and chemokines in patients with haemorrhagic fever with renal syndrome. J Int Med Res 40(2):648–656

    Article  PubMed  Google Scholar 

  28. Kyriakidis I, Papa A (2013) Serum TNF-alpha, sTNFR1, IL-6, IL-8 and IL-10 levels in hemorrhagic fever with renal syndrome. Virus Res 175(1):91–94

    Article  CAS  PubMed  Google Scholar 

  29. Korva M, Saksida A, Kejžar N et al (2013) Viral load and immune response dynamics in patients with haemorrhagic fever with renal syndrome. Clin Microbiol Infect 19(8):E358–E366

    Article  CAS  PubMed  Google Scholar 

  30. Stolpen AH, Guinan EC, Fiers W et al (1986) Recombinant tumor necrosis factor and immune interferon act singly and in combination to reorganize human vascular endothelial cell monolayers. Am J Pathol 123(1):16–24

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Khaiboullina SF, Netski DM, Krumpe P et al (2000) Effects of tumor necrosis factor alpha on sin nombre virus infection in vitro. J Virol 74(24):11966–11971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yi ES, Ulich TR (1992) Endotoxin, interleukin-1, and tumor necrosis factor cause neutrophil-dependent microvascular leakage in postcapillary venules. Am J Pathol 140(3):659–663

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Horvath CJ, Ferro TJ, Jesmok G et al (1988) Recombinant tumor necrosis factor increases pulmonary vascular permeability independent of neutrophils. Proc Natl Acad Sci U S A 85(23):9219–9223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Abe Y, Sekiya S, Yamasita T et al (1990) Vascular hyperpermeability induced by tumor necrosis factor and its augmentation by IL-1 and IFN-gamma is inhibited by selective depletion of neutrophils with a monoclonal antibody. J Immunol 145(9):2902–2907

    CAS  PubMed  Google Scholar 

  35. Schoenborn JR, Wilson CB (2007) Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol 96:41–101

    Article  CAS  PubMed  Google Scholar 

  36. Tkachenko EA, Bernshtein AD, Dzagurova TK et al (2013) Actual problems of hemorrhagic fever with renal syndrome. Zh Mikrobiol Epidemiol Immunobiol (1):51–58

  37. Jonsson CB, Figueiredo LT, Vapalahti O (2010) A global perspective on hantavirus ecology, epidemiology, and disease. Clin Microbiol Rev 23(2):412–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Linderholm M, Ahlm C, Settergren B et al (1996) Elevated plasma levels of tumor necrosis factor (TNF)-alpha, soluble TNF receptors, interleukin (IL)-6, and IL-10 in patients with hemorrhagic fever with renal syndrome. J Infect Dis 173(1):38–43

    Article  CAS  PubMed  Google Scholar 

  39. Liu JM, Zhu Y, Wang JP et al (2004) Changes and significance of TNF, sIL-2R, IL-6, IL-4 and IFN-gamma levels in plasma from the patients with hemorrhagic fever with renal syndrome. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 20(6):744–746

    CAS  PubMed  Google Scholar 

  40. Markotić A, Gagro A, Dasić G et al (2002) Immune parameters in hemorrhagic fever with renal syndrome during the incubation and acute disease: case report. Croat Med J 43(5):587–590

    PubMed  Google Scholar 

  41. Fan W, Liu X, Yue J (2012) Determination of urine tumor necrosis factor, IL-6, IL-8, and serum IL-6 in patients with hemorrhagic fever with renal syndrome. Braz J Infect Dis 16(6):527–530

    Article  CAS  PubMed  Google Scholar 

  42. Zheng F, Li L, Liu Z (1996) Immune-mediated tubulointerstitial injury in hemorrhagic fever with renal syndrome. Zhonghua Yi Xue Za Zhi 76(6):411–415

    CAS  PubMed  Google Scholar 

  43. Sironen T, Klingström J, Vaheri A et al (2008) Pathology of Puumala hantavirus infection in macaques. PLoS One 3(8):e3035

    Article  PubMed  PubMed Central  Google Scholar 

  44. Raué HP, Beadling C, Haun J et al (2013) Cytokine-mediated programmed proliferation of virus-specific CD8(+) memory T cells. Immunity 38(1):131–139

    Article  PubMed  PubMed Central  Google Scholar 

  45. Munk RB, Sugiyama K, Ghosh P et al (2011) Antigen-independent IFN-gamma production by human naïve CD4 T cells activated by IL-12 plus IL-18. PLoS One 6(5):e18553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wehner R, Dietze K, Bachmann M et al (2011) The bidirectional crosstalk between human dendritic cells and natural killer cells. J Innate Immun 3(3):258–263

    Article  CAS  PubMed  Google Scholar 

  47. Zwirner NW, Domaica CI (2010) Cytokine regulation of natural killer cell effector functions. Biofactors 36(4):274–288

    Article  CAS  PubMed  Google Scholar 

  48. Watford WT, Moriguchi M, Morinobu A et al (2003) The biology of IL-12: coordinating innate and adaptive immune responses. Cytokine Growth Factor Rev 14(5):361–368

    Article  CAS  PubMed  Google Scholar 

  49. Biron CA, Nguyen KB, Pien GC et al (1999) Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 17:189–220

    Article  CAS  PubMed  Google Scholar 

  50. Chan SH, Perussia B, Gupta JW et al (1991) Induction of interferon gamma production by natural killer cell stimulatory factor: characterization of the responder cells and synergy with other inducers. J Exp Med 173(4):869–879

    Article  CAS  PubMed  Google Scholar 

  51. Trinchieri G (1998) Immunobiology of interleukin-12. Immunol Res 17(1–2):269–278

    Article  CAS  PubMed  Google Scholar 

  52. Settergren B, Trollfors B, Fasth A et al (1990) Glomerular filtration rate and tubular involvement during acute disease and convalescence in patients with nephropathia epidemica. J Infect Dis 161(4):716–720

    Article  CAS  PubMed  Google Scholar 

  53. Ala-Houhala I, Koskinen M, Ahola T et al (2002) Increased glomerular permeability in patients with nephropathia epidemica caused by puumala hantavirus. Nephrol Dial Transplant 17(2):246–252

    Article  PubMed  Google Scholar 

  54. Huggins JW, Hsiang CM, Cosgriff TM et al (1991) Prospective, double-blind, concurrent, placebo-controlled clinical trial of intravenous ribavirin therapy of hemorrhagic fever with renal syndrome. J Infect Dis 164(6):1119–1127

    Article  CAS  PubMed  Google Scholar 

  55. Chang JT, Segal BM, Nakanishi K et al (2000) The costimulatory effect of IL-18 on the induction of antigen-specific IFN-gamma production by resting T cells is IL-12 dependent and is mediated by up-regulation of the IL-12 receptor beta2 subunit. Eur J Immunol 30(4):1113–1119

    Article  CAS  PubMed  Google Scholar 

  56. Schulz EG, Mariani L, Radbruch A et al (2009) Sequential polarization and imprinting of type 1 T helper lymphocytes by interferon-gamma and interleukin-12. Immunity 30(5):673–683

    Article  CAS  PubMed  Google Scholar 

  57. Wang PZ, Huang CX, Zhang Y et al (2009) Analysis of the immune response to Hantaan virus nucleocapsid protein C-terminal-specific CD8(+) T cells in patients with hemorrhagic fever with renal syndrome. Viral Immunol 22(4):253–260

    Article  CAS  PubMed  Google Scholar 

  58. Van Epps HL, Terajima M, Mustonen J et al (2002) Long-lived memory T lymphocyte responses after hantavirus infection. J Exp Med 196(5):579–588

    Article  PubMed  PubMed Central  Google Scholar 

  59. Van Epps HL, Schmaljohn CS, Ennis FA (1999) Human memory cytotoxic T-lymphocyte (CTL) responses to Hantaan virus infection: identification of virus-specific and cross-reactive CD8(+) CTL epitopes on nucleocapsid protein. J Virol 73(7):5301–5308

    PubMed  PubMed Central  Google Scholar 

  60. Laouini D, Alenius H, Bryce P et al (2003) IL-10 is critical for Th2 responses in a murine model of allergic dermatitis. J Clin Invest 112(7):1058–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu L, Rich BE, Inobe J et al (1998) Induction of Th2 cell differentiation in the primary immune response: dendritic cells isolated from adherent cell culture treated with IL-10 prime naive CD4+ T cells to secrete IL-4. Int Immunol 10(8):1017–1026

    Article  CAS  PubMed  Google Scholar 

  62. Deshmane SL, Kremlev S, Amini S et al (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 29(6):313–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chensue SW, Warmington KS, Ruth JH et al (1996) Role of monocyte chemoattractant protein-1 (MCP-1) in Th1 (mycobacterial) and Th2 (schistosomal) antigen-induced granuloma formation: relationship to local inflammation, Th cell expression, and IL-12 production. J Immunol 157(10):4602–4608

    CAS  PubMed  Google Scholar 

  64. Braun MC, Lahey E, Kelsall BL (2000) Selective suppression of IL-12 production by chemoattractants. J Immunol 164(6):3009–3017

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the subsidy of the Russian Government to support the Program of Competitive Growth of Kazan Federal University. Some of the experiments were conducted with the support of the Federal Center of Collective Use and Pharmaceutical Research and Education Center, Kazan (Volga Region) Federal University, Kazan, Russia.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. C. Lombardi or A. A. Rizvanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaiboullina, S.F., Martynova, E.V., Khamidullina, Z.L. et al. Upregulation of IFN-γ and IL-12 is associated with a milder form of hantavirus hemorrhagic fever with renal syndrome. Eur J Clin Microbiol Infect Dis 33, 2149–2156 (2014). https://doi.org/10.1007/s10096-014-2176-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-014-2176-x

Keywords

Navigation