Skip to main content

Advertisement

Log in

Biological Soil Crust Microsites Are the Main Contributor to Soil Respiration in a Semiarid Ecosystem

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Biological soil crusts (BSCs) are a key biotic component of dryland ecosystems worldwide. However, most studies carried out to date on carbon (C) fluxes in these ecosystems, such as soil respiration, have neglected them. We conducted a 3.5-year field experiment to evaluate the spatio-temporal heterogeneity of soil respiration in a semiarid Stipa tenacissima steppe and to assess the contribution of BSC-dominated areas to the annual soil respiration of the whole ecosystem. We selected the six most frequent microsites in the study area: Stipa tussocks (ST), Retama sphaerocarpa shrubs (RS), and open areas with very low (<5% BSC cover, BS), low, medium and high cover of well-developed BSCs. Soil respiration rates did not differ among BSC-dominated microsites but were significantly higher and lower than those found in BS and ST microsites, respectively. A model using soil temperature and soil moisture accounted for over 85% of the temporal variation in soil respiration throughout the studied period. Using this model, we estimated a range of 240.4–322.6 g C m−2 y−1 released by soil respiration at our study area. Vegetated (ST and RS) and BSC-dominated microsites accounted for 37 and 42% of this amount, respectively. Our results indicate that accounting for the spatial heterogeneity in soil respiration induced by BSCs is crucial to provide accurate estimations of this flux at the ecosystem level. They also highlight that BSC-dominated areas are the main contributor to the total C released by soil respiration and, therefore, must be considered when estimating C budgets in drylands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Almagro M, López J, Querejeta JI, Martínez-Mena M. 2009. Temperature dependence of soil CO2 efflux is strongly modulated by seasonal patterns of moisture availability in a Mediterranean ecosystem. Soil Biol Biochem 41:594–605.

    Article  CAS  Google Scholar 

  • Azcón-Aguilar C, Palenzuela J, Roldan A, Bautista S, Vallejo VR, Barea JM. 2002. Analysis of the mycorrhizal potential in the rhizosphere of representative plant species from desertification-threatened Mediterranean shrublands. Appl Soil Ecol 21:1–9.

    Article  Google Scholar 

  • Belnap J. 2002. Nitrogen fixation in biological soil crusts from southeast Utah, USA. Biol Fertil Soils 35:128–35.

    Article  CAS  Google Scholar 

  • Belnap J. 2006. The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol Process 20:3159–78.

    Article  CAS  Google Scholar 

  • Belnap J, Lange OL. 2003. Biological soil crusts: structure, function and management. Berlin: Springer.

    Google Scholar 

  • Bond-Lamberty B, Thomson A. 2010. A global database of soil respiration data. Biogeosciences 7:1915–26.

    Article  CAS  Google Scholar 

  • Bowker MA, Belnap J, Chaudhary VB, Johnson NC. 2008. Revisiting classic water erosion models in drylands: the strong impact of biological soil crust. Soil Biol Biochem 40:2308–16.

    Google Scholar 

  • Cable JM, Ogle K, Williams DG, Weltzin J, Huxman TE. 2008. Soil texture drives responses of soil respiration to precipitation pulses in the Sonoran Desert: implications for climate change. Ecosystems 11:961–79.

    Article  Google Scholar 

  • Casals P, Romanyà J, Cortina J, Bottner P, Couteaux MM, Vallejo VR. 2000. CO2 efflux from a Mediterranean semi-arid forest soil. I. Seasonality and effect of stoniness. Biogeochemistry 48:261–81.

    Article  Google Scholar 

  • Castillo-Monroy AP, Maestre FT, Delgado-Baquerizo M, Gallardo A. 2010. Biological soil crusts modulate nitrogen availability in semi-arid ecosystems: insights from a Mediterranean grassland. Plant Soil 333:21–34.

    Article  CAS  Google Scholar 

  • Castillo-Monroy AP, Bowker MA, Maestre FT, Rodríguez-Echeverría S, Martínez I, Barraza-Zepeda CE, Escolar C. 2011. Relationships between biological soil crusts, bacterial diversity and abundance, and ecosystem functioning: insights from a semi-arid Mediterranean environment. J Veg Sci 22:165–74.

    Article  Google Scholar 

  • Chaudhary VB, Bowker MA, O’Dell TE, Grace JB, Redman AE, Rillig MC, Johnson NC. 2009. Untangling the biological contributions to soil stability in semiarid shrublands. Ecol Appl 19:110–22.

    Article  PubMed  Google Scholar 

  • Chen H, Tian H-Q. 2005. Does a general temperature-dependent Q10 model of soil respiration exist at biome and global scale? J Integr Plant Biol 47:1288–302.

    Article  Google Scholar 

  • Conant RT, Klopatek JM, Klopatek CC. 2000. Environmental factors controlling soil respiration in three semiarid ecosystem. Soil Sci Soc Am J 65:383–90.

    Article  Google Scholar 

  • Conant RT, Dalla-Betta P, Klopatek CC, Klopatek JM. 2004. Controls on soil respiration in semiarid soils. Soil Biol Biochem 36:945–51.

    Article  CAS  Google Scholar 

  • Darby BJ, Neher DA, Belnap J. 2010. Impact of biological soil crusts and desert plants on soil microfaunal community composition. Plant Soil 328:421–31.

    Article  CAS  Google Scholar 

  • Davidson EA, Belk E, Boone RD. 1998. Soil water content and temperature as independent or confounded factor controlling soil respiration in a temperate mixed hardwood forest. Glob Change Biol 4:217–27.

    Article  Google Scholar 

  • Delgado-Baquerizo M, Castillo-Monroy AP, Maestre FT, Gallardo A. 2010. Plants and biological soil crusts modulate the dominance of N forms in a semi-arid grassland. Soil Biol Biochem 42:376–8.

    Article  CAS  Google Scholar 

  • Elbert W, Weber B, Büdel B, Andreae MO, Pöschl U. 2009. Microbiotic crusts on soil, rock and plant: neglected major players in the global cycles of carbon and nitrogen? Biogeosci Discuss 6:6983–7015.

    Article  Google Scholar 

  • Eldridge DJ, Bowker MA, Maestre FT, Alonso P, Mau RL, Papadopulos J, Escudero A. 2010. Interactive effects of three ecosystem engineers on infiltration in a semi-arid Mediterranean grassland. Ecosystems 13:499–510.

    Article  Google Scholar 

  • Fernandez DP, Neff JC, Belnap J, Reynolds RL. 2006. Soil respiration in the cold desert environment of the Colorado Plateau (USA): abiotic regulators and thresholds. Biogeochemistry 78:247–65.

    Article  Google Scholar 

  • Frank A, Liebig MA, Hanson JD. 2002. Soil carbon dioxide fluxes in northern semiarid grasslands. Soil Biol Biochem 34:1235–41.

    Article  CAS  Google Scholar 

  • Gallardo A, Schlesinger WH. 1992. Carbon and nitrogen limitations of soil microbial biomass in desert ecosystems. Biogeochemistry 18:1–17.

    Article  CAS  Google Scholar 

  • Grote EE, Belnap J, Housman DC, Sparks JP. 2010. Carbon exchange in biological soil crust communities under differential temperatures and soil water content: implications for global change. Glob Change Biol 16:2763–74.

    Article  Google Scholar 

  • Han G, Zhou G, Xu Z, Yang Y, Liu J, Shi K. 2007. Biotic and abiotic factors controlling the spatial and temporal variation of soil respiration in an agricultural ecosystem. Soil Biol Biochem 39:418–25.

    Article  CAS  Google Scholar 

  • Housman DC, Yeager CM, Darby BJ, Sanford RL Jr, Kuske CK, Neher DA, Belnap J. 2007. Heterogeneity of soil nutrients and subsurface biota in a dryland ecosystem. Soil Biol Biochem 39:2138–49.

    Article  CAS  Google Scholar 

  • Jackson RB, Banner JL, Jobbagy EG, Pockman WT, Wall DH. 2002. Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418:623–6.

    Article  PubMed  CAS  Google Scholar 

  • Jarvis P, Rey A, Petsikos C, Wingate L, Rayment M, Pereira J, Banza J, David J, Miglietta F, Borghetti M, Manca R, Valentini R. 2007. Drying and wetting of Mediterranean soil stimulate decomposition and carbon dioxide emission: the “Birch effect”. Tree Physiol 27:929–40.

    PubMed  CAS  Google Scholar 

  • Kieft TL. 1991. Soil microbiology in reclamation of arid and semi-arid land. In: Skujins J, Ed. Semiarid land and desert: soil resource and reclamation. New York: Marcel Dekker. p 209–57.

    Google Scholar 

  • Kim J, Verma SB, Clements RJ. 1992. Carbon dioxide budget in a temperate grassland ecosystem. J Geogr Res 97:6057–63.

    CAS  Google Scholar 

  • Körner Ch. 2000. Biosphere responses to CO2 enrichment. Ecol Appl 10:1590–619.

    Google Scholar 

  • Lange OL. 2003. Photosynthesis of soil-crust biota as dependent on environmental factors. In: Belnap J, Lange OL, Eds. Biological soil crusts: structure, function, and management. Berlin: Springer. p 217–40.

    Chapter  Google Scholar 

  • Law BE, Kelliher FM, Baldocchi DD, Anthoni PM, Irvine J, Moore D, Van Tuyl S. 2001. Spatial and temporal variation in respiration in a young ponderosa pine forest during a summer drought. Agric For Meteorol 110:27–43.

    Article  Google Scholar 

  • Lázaro R, Canton Y, So-lé-Benet A, Bevan J, Alexander C, Sancho L, Puigdefábregas J. 2008. The influence of competition between lichen colonization and erosion on the evolution of soil surfaces in the Tabernes badlands (SE Spain) and its landscape effects. Geomorphology 102:252–66.

    Article  Google Scholar 

  • Lloyd J, Taylor JA. 1994. On the temperature dependence of soil respiration. Funct Ecol 8:315–23.

    Article  Google Scholar 

  • Luo Y, Zhou X. 2006. Soil respiration and the environment. Burlington: Academic Press.

    Google Scholar 

  • Maestre FT, Cortina J. 2002. Spatial patterns of surface soil properties and vegetation in a Mediterranean semi-arid steppe. Plant Soil 241:279–91.

    Article  CAS  Google Scholar 

  • Maestre FT, Cortina J. 2003. Small-scale spatial variation in soil CO2 efflux in a Mediterranean semiarid steppe. Appl Soil Ecol 23:199–209.

    Article  Google Scholar 

  • Maestre FT, Cortina J. 2006. Ecosystem structure and soil surface conditions drive the variability in foliar δ13C and δ15N of Stipa tenacissima in semiarid Mediterranean steppes. Ecol Res 21:44–53.

    Article  Google Scholar 

  • Maestre FT, Bautista S, Cortina J, Bellot J. 2001. Potential of using facilitation by grasses to establish shrubs on a semiarid degraded steppe. Ecol Appl 11:1641–55.

    Article  Google Scholar 

  • Maestre FT, Escudero A, Martínez I, Guerrero C, Rubio A. 2005. Does spatial pattern matter to ecosystem functioning? Insights from biological soil crusts. Funct Ecol 19:566–73.

    Article  Google Scholar 

  • Maestre T, Bowker MA, Puche MD, Hinojosa MB, Martínez I, García-Palacios P, Castillo AP, Soliveres S, Luzuriaga AL, Sánchez AM, Carreira JA, Gallardo A, Escudero A. 2009. Shrub encroachment can reverse desertification in Mediterranean semiarid grasslands. Ecol Lett 12:930–41.

    Article  PubMed  Google Scholar 

  • Maestre FT, Bowker MA, Escolar C, Soliveres S, Mouro S, García-Palacios P, Castillo AP, Martínez I, Escudero A. 2010. Do biotic interactions modulate ecosystem functioning along abiotic stress gradients? Insights from semi-arid Mediterranean plant and biological soil crust communities. Philos Trans R Soc B 365:2057–70.

    Article  Google Scholar 

  • Mielnick PC, Dugas WA. 2000. Soil CO2 flux in a tallgrass prairie. Soil Biol Biochem 32:221–8.

    Article  CAS  Google Scholar 

  • Pacala SW, Hurtt GC, Baker D, Peylin P, Houghton RA, Birdsey RA, Heath L, Sundquist ET, Stallard RF, Ciais P, Moorcrof P, Caspersen JP, Shevliakova E, Moore B, Kohlmaier G, Holland E, Gloor M, Harmon HE, Fan SM, Sarmiento JL, Goodale CL, Schimel D, Field CB. 2001. Consistent land- and atmosphere-based US carbon sink estimates. Science 292:2316–20.

    Article  PubMed  CAS  Google Scholar 

  • Puigdefábregas J, Solé-Benet A, Gutierrez L, Del Barrio G, Boer M. 1999. Scales and processes of water and sediment redistribution in drylands: results from the Rambla Honda field site in Southeast Spain. Earth-Sci Rev 48:39–70.

    Article  Google Scholar 

  • Querejeta JI, Barea JM, Allen M, Caravaca F, Roldán A. 2003. Differential response of d13C and water use efficiency to arbuscular mycorrhizal infection in two aridland woody plant species. Oecologia 135:510–15.

    PubMed  Google Scholar 

  • Raich JW, Schlesinger WH. 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B:81–99.

    CAS  Google Scholar 

  • Raich JW, Potter CS, Bhawagati D. 2002. Interannual variability in global soil respiration, 1980–1994. Glob Change Biol 8:800–12.

    Article  Google Scholar 

  • Rey A, Pegoraro E, Tedeschi V, De Parri I, Jarvis PG, Valentini R. 2002. Annual variation in soil respiration and its components in a coppice oak forest in Central Italy. Glob Change Biol 8:581–866.

    Article  Google Scholar 

  • Rey A, Pegoraro E, Oyonarte C, Were A, Escribano P, Raimundo J. 2011. Impact of land degradation on soil respiration in a steppe semiarid ecosystem. Soil Biol Biochem 43:393–403.

    Article  CAS  Google Scholar 

  • Reynolds JF, Stafford Smith M, Lambin EF, Turner BLII, Mortimore M, Batterbury SPJ, Downing TE, Dowlatabadi H, Fernandez RJ, Herrick JE, Huber-Sannvald E, Leemans R, Lynam T, Maestre FT, Ayarza M, Walker B. 2007. Global desertification: building a science for dryland development. Science 316:847–51.

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger WH, Raikes JA, Hartley AE, Cross AF. 1996. On the spatial pattern of soil nutrients in desert ecosystems. Ecology 77:364–74.

    Article  Google Scholar 

  • Shen W, Reynolds JF, Hui D. 2009. Responses of dryland soil respiration and soil carbon pool size to abrupt versus gradual and individual versus combined changes in soil temperature, precipitation, and atmospheric [CO2]: a simulation analysis. Glob Change Biol 15:2274–94.

    Article  Google Scholar 

  • Soil Survey Staff. 1994. Keys to soil taxonomy, 6th edn. Blacksburg: USDA Soil Conservation Service, Pocahontas Press.

  • Sponseller RA. 2007. Precipitation pulses and soil CO2 flux in Sonoran desert ecosystem. Glob Change Biol 13:426–36.

    Article  Google Scholar 

  • Stubbs MM, Pyke DA. 2005. Available nitrogen: a time-based study of manipulated resource islands. Plant Soil 270:123–33.

    Article  CAS  Google Scholar 

  • Thomas AD, Hoon SR. 2010. Carbon dioxide fluxes from biologically-crusted Kalahari Sands after simulated wetting. J Arid Environ 74:131–9.

    Article  Google Scholar 

  • Thomas AD, Hoon SR, Linton PE. 2008. Carbon dioxide fluxes from cyanobacteria crusted soils in the Kalahari. Appl Soil Ecol 39:254–63.

    Article  Google Scholar 

  • Topp GC, Davis JL. 1985. Measurement of soil water content using time-domain reflectometry (TDR): a field evaluation. Soil Sci Soc Am J 49:19–24.

    Article  Google Scholar 

  • Valentin C, d’Herbès JM, Poesen J. 1999. Soil and water components of banded vegetation pattern. Catena 37:1–24.

    Article  Google Scholar 

  • West NE, Stark JM, Johnson DW, Abrams MM, Wight JR, Heggem D, Peck S. 1994. Effects of climatic-change on the edaphic features of arid and semiarid lands of western north-America. Arid Soil Res Rehabil 8:307–75.

    Google Scholar 

  • Wilske B, Burgheimer J, Karnieli A, Zaady E, Andreae MO, Yakir D, Kesselmeier J. 2008. The CO2 exchange of biological soil crusts in a semiarid grass-shrubland at the northern transition zone of the Negev desert, Israel. Biogeosciences 5:1411–23.

    Article  CAS  Google Scholar 

  • Wohlfahrt G, Fenstermaker LF, Arnone JAIII. 2008. Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystem. Glob Change Biol 14:1475–87.

    Article  Google Scholar 

  • Xie JX, Li Y, Zhai CX, Lan Z. 2009. CO2 absorption by alkaline soil and its implication to the global carbon cycle. Environ Geol 56:953–61.

    Article  CAS  Google Scholar 

  • Zaady E, Kuhm U, Wilske B, Sandoval-Soto L, Kesselmeier J. 2000. Patterns of CO2 exchange in biological soil crusts of successional age. Soil Biol Biochem 32:959–66.

    Article  CAS  Google Scholar 

  • Zar JH. 1999. Biostatistical analysis. 4th edn. New Jersey: Prentice Hall.

    Google Scholar 

  • Zhang LH, Chen YN, Zhao RF, Li WH. 2010. Significance of temperature and soil water content on soil respiration in three desert ecosystems in Northwest China. J Arid Environ 74:1200–11.

    Article  Google Scholar 

Download references

Acknowledgements

We thank C. Escolar, R. Mau, M. Carpio, E. Pigem, P. Alonso, C. Alcalá, J. Papadopoulos, P. Izquierdo, J. Gutiérrez, M. Méndez, R. Jiménez, A. Escudero, I. Martínez, and I. Conde for their help in laboratory and in the fieldwork, and R. Lázaro, J. Cortina, M. Goberna, A. Escudero, L. García-Sancho, J. Neff, and two anonymous referees for comments on a previous version of the manuscript. We thank the Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA) for access to the Aranjuez Experimental Station (Finca de Sotomayor). APC, SS, and PGP were supported by Ph.D. fellowships from the INTERCAMBIO (BIOCON06/105) and EXPERTAL grants, funded by the Fundación BBVA and Fundación Biodiversidad/CINTRA S.A., respectively. This research was funded by an Early Career Project Grant from the British Ecological Society (ECPG 231/607), by the Spanish Ministry of Science and Innovation (grant CGL2008-00986-E/BOS), by the INTERCAMBIO grant, and by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement no. 242658 (BIOCOM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando T. Maestre.

Additional information

Author Contributions

FTM conceived the study; APCM, FTM, SS and PGP performed the research; APCM and AR analyzed the data; and APCM and FTM wrote the paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 430 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castillo-Monroy, A.P., Maestre, F.T., Rey, A. et al. Biological Soil Crust Microsites Are the Main Contributor to Soil Respiration in a Semiarid Ecosystem. Ecosystems 14, 835–847 (2011). https://doi.org/10.1007/s10021-011-9449-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-011-9449-3

Key words

Navigation