Skip to main content
Log in

Theoretical modeling and experimental studies on N-n-Decyl-2-oxo-5-nitro-1-benzylidene-methylamine

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The Schiff base compound, N-n-Decyl-2-oxo-5-nitro-1-benzylidene-methylamine, has been -synthesized and characterized by IR, electronic spectroscopy, and X-ray single-crystal determination. Molecular geometry from X-ray experiment of the title compound in the ground state have been compared using the Hartree-Fock (HF) and density functional method (B3LYP) with 6-31G(d) basis set. Calculated results show that density functional theory (DFT) at B3LYP/6-31G(d) level can well reproduce the structure of the title compound. To investigate the solvent effect for the atomic charge distributions of the title compound, self-consistent reaction field theory with Onsager reaction field model was used. In addition, DFT calculations of the title compound, molecular electrostatic potential and thermodynamic properties were performed at B3LYP/6-31G(d) level of theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang Y, Guo ZJ, You XZ (2001) J Am Chem Soc 123:9378–9387

    Article  CAS  Google Scholar 

  2. Proft FD, Geerlings P (2001) Chem Rev 101:1451–1464

    Article  Google Scholar 

  3. Fitzgerald G, Andzelm J (1991) J Phys Chem 95:10531–10534

    Article  CAS  Google Scholar 

  4. Ziegler T (1991) Pure Appl Chem 63:873–878

    Article  CAS  Google Scholar 

  5. Andzelm J, Wimmer E (1992) J Chem Phys 95:1208–1303

    Google Scholar 

  6. Scuseria GE (1992) J Chem Phys 97:7528–7530

    Article  CAS  Google Scholar 

  7. Dickson RM, Becke AD (1993) J Chem Phys 99:3898–3905

    Article  CAS  Google Scholar 

  8. Johnson BG, Gill PMW, Pople JA (1993) J Chem Phys 98:5612–5626

    Article  CAS  Google Scholar 

  9. Oliphant N, Bartlett RJ (1994) J Chem Phys 100:6550–6561

    Article  CAS  Google Scholar 

  10. Barton D, Ollis WD (1979) Comprehensive organic chemistry, vol 2. Pergamon, Oxford

    Google Scholar 

  11. Layer RW (1963) Chem Rev 63:487–510

    Article  Google Scholar 

  12. Ingold CK (1969) Structure and mechanism in organic chemistry, 2nd edn. Cornell Univ, Ithaca

    Google Scholar 

  13. Novopol’tseva OM (1995) Cand Sci (Chem), Dissertation, Volgograd

  14. Aydoğan F, Öcal N, Turgut Z, Yolaçan C (2001) Bull Korean Chem Soc 22:476–480

    Google Scholar 

  15. Cohen MD, Schmidt GMJ, Flavian S (1964) J Chem Soc 2041-2051

  16. Hadjoudis E, Vitterakis M, Mavridis IM (1987) Tetrahedron 43:1345–1360

    Article  CAS  Google Scholar 

  17. Xu XX, You XZ, Sun ZF, Wang X, Liu HX (1994) Acta Crystallogr C50:1169–1171

    CAS  Google Scholar 

  18. Petek H, Albayrak Ç, Ağar E, Ocak İskeleli N, Şenel I (2007) Acta Cryst E63:810–812

    Google Scholar 

  19. Özek A, Albayrak Ç, Odabaşoğlu M, Büyükgüngör O (2007) Acta Cryst C63:177–180

    Google Scholar 

  20. Karabıyık H, Ocak İskeleli N, Petek H, Albayrak Ç, Ağar E (2008) J Mol Struct 873:130–136

    Article  Google Scholar 

  21. Koşar B, Büyükgüngör O, Albayrak Ç, Odabaşoğlu M (2004) Acta Cryst C60:458–460

    Google Scholar 

  22. Tanak H, Erşahin F, Ağar E, Büyükgüngör O, Yavuz M (2008) Anal Sci 24:237–238

    Article  Google Scholar 

  23. Schlegel HB (1982) J Comput Chem 3:214–218

    Article  CAS  Google Scholar 

  24. Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996) J Comput Chem 17:49–56

    Article  CAS  Google Scholar 

  25. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision E.01. Gaussian Inc, Wallingford CT

  26. Frisch A, Dennington II R, Keith T, Millam J, Nielsen AB, Holder AJ, Hiscocks J (2007) GaussView Reference, Version 4.0. Gaussian Inc, Pittsburgh

  27. Onsager L (1936) J Am Chem Soc 58:1486–1493

    Article  CAS  Google Scholar 

  28. Politzer P, Murray J (2002) Theor Chem Acc 108:134–142

    CAS  Google Scholar 

  29. Runge E, Gross EKU (1984) Phys Rev Lett 52:997–1000

    Article  CAS  Google Scholar 

  30. Stratmann RE, Scuseria GE, Frisch MJ (1998) J Chem Phys 109:8218–8224

    Article  CAS  Google Scholar 

  31. Bauernschmitt R, Ahlrichs R (1996) Chem Phys Lett 256:454–464

    Article  CAS  Google Scholar 

  32. Casida ME, Jamorski C, Casida KC, Salahub DR (1998) J Chem Phys 108:4439–4449

    Article  CAS  Google Scholar 

  33. Foresman JB, Frisch A (1996) Exploring chemistry with electronic structure methods, 2nd edn. Gaussian Inc, Pittsburgh, PA

    Google Scholar 

  34. Böhme U, Fels S (2008) Acta Cryst E64:178

    Google Scholar 

  35. Bondi A (1964) J Phys Chem 68:441–450

    Article  CAS  Google Scholar 

  36. Bernstein J, Davies RE, Simoni L, Chang NL (1995) Angew Chem Int Ed Engl 34:1555–1573

    Article  CAS  Google Scholar 

  37. Ramos Silva M, Matos Beja A, Paixao JA, Sobral AJFN, Lopesb SHA, Rocha Gonsalves AMd'A (2002) Acta Cryst C58:572-574

  38. Ramos Silva M, Matos Beja A, Paixao JA, Alte da Veiga L, Sobral AJFN, Rebanda NGCL, Rocha Gonsalves AMd'A (2000) Acta Cryst C56:1136-1138

  39. Yonkey MM, Walczak CP, Squattrito PJ, Mohantya DK, Kirschbaum K (2008) Acta Cryst E64:549

    Google Scholar 

  40. Jezierska A, Jerzykiewicz LB, Kołodziejczak J, Sobczak JM (2007) J Mol Struct 839:33–40

    Article  CAS  Google Scholar 

  41. Jian FF, Zhao PS, Bai ZS, Zhang L (2005) Struct Chem 16:635–639

    Article  CAS  Google Scholar 

  42. Baldini M, Belicchi-Ferrari M, Bisceglie F, Pelosi G, Pinelli S, Tarasconi P (2003) Inorg Chem 42:2049–2055

    Article  CAS  Google Scholar 

  43. Ashfield LJ, Cowley AR, Dilworth JR, Donnelly PS (2004) Inorg Chem 43:4121–4123

    Article  CAS  Google Scholar 

  44. Casas JS, Castellano EE, Ellena J, Garcia Tasende MS, Sanchez A, Sordo J, Vidarte MJ (2003) Inorg Chem 42:2584–2595

    Article  CAS  Google Scholar 

  45. Ledbetter JW Jr (1968) J Phys Chem 72:4111–4115

    Article  CAS  Google Scholar 

  46. Dudek GO, Dudek EP (1966) J Am Chem Soc 88:2407–2412

    Article  CAS  Google Scholar 

  47. Salman SR, Shawkat SH, Al-Obaidi GM (1990) Can J Spectros 35:25–27

    CAS  Google Scholar 

  48. Salman SR, Shawkat SH, Al-Obaidi GM (1989) Spectrosc Lett 22:1265–1273

    Article  CAS  Google Scholar 

  49. Yıldız M, Kılıç Z, Hökelek T (1998) J Mol Struct 441:1–10

    Article  Google Scholar 

  50. Nazır H, Yıldız M, Yılmaz H, Tahir MN, Ülkü D (2000) J Mol Struct 524:241–250

    Article  Google Scholar 

  51. Ünver H, Yıldız M, Zengin DM, Özbey S, Kendi E (2001) J Chem Crystallogr 31:211–216

    Article  Google Scholar 

  52. Salman SR, Kamounah FS (2002) Spectrosc Lett 35:327–335

    Article  CAS  Google Scholar 

  53. Yıldız M (2004) Spectrosc Lett 37:367–381

    Article  Google Scholar 

  54. Ünver H, Yıldız M, Kiraz A, Özgen Ö (2009) J Chem Crystallogr 39:17-23

    Google Scholar 

  55. Alarcon SH, Pagani D, Bacigalupo J, Olivieri AC (1999) J Mol Struct 475:233–240

    Article  Google Scholar 

  56. Scrocco E, Tomasi J (1978) Adv Quantum Chem 11:115–121

    Article  CAS  Google Scholar 

  57. Luque FJ, Lopez JM, Orozco M (2000) Theor Chem Acc 103:343–345

    CAS  Google Scholar 

  58. Okulik N, Jubert AH (2005) Internet Electron J Mol Des 4:17–30

    CAS  Google Scholar 

  59. Politzer P, Laurence PR, Jayasuriya K, McKinney J (1985) Special issue of Environ Health Perspect 61:191–202

    Article  CAS  Google Scholar 

  60. Scrocco E, Tomasi J (1973) Topics in current chemistry, vol. 7. Springer, Berlin, p 95

    Google Scholar 

  61. Politzer P, Truhlar DG (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New York

    Google Scholar 

Download references

Acknowledgments

This study was supported financially by the Research Centre of Ondokuz Mayıs University (Project No: F-476).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Tanak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanak, H., Erşahin, F., Köysal, Y. et al. Theoretical modeling and experimental studies on N-n-Decyl-2-oxo-5-nitro-1-benzylidene-methylamine. J Mol Model 15, 1281–1290 (2009). https://doi.org/10.1007/s00894-009-0492-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0492-3

Keywords

Navigation