Skip to main content
Log in

Life at low temperatures: is disorder the driving force?

  • Review
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The thermodynamic characterization of various biological systems from psychrophiles points to a larger entropic contribution when compared to the corresponding mesophilic or (hyper) thermophilic counterparts, either at the level of the macromolecules (thermodynamic and kinetic stabilities) or of their function (ligand binding, catalytic activity). It is suggested here that in an environment characterized by a low heat content (enthalpy) and at temperatures that strongly slowdown molecular motions, the cold-adapted biological systems rely on a larger disorder to maintain macromolecular dynamics and function. Such pre-eminent involvement of entropy is observed in the experimental results and, from a macroscopic point of view, is also reflected for instance by the steric hindrances introduced by cis-unsaturated and branched lipids to maintain membrane fluidity, by the loose conformation of psychrophilic proteins or by the local destabilization of tRNA by dihydrouridine in psychrophilic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Becktel WJ, Schellman JA (1987) Protein stability curves. Biopolymers 26:1859–1877

    Article  PubMed  CAS  Google Scholar 

  • Collins T, Meuwis MA, Gerday C, Feller G (2003) Activity, stability and flexibility in glycosidases adapted to extreme thermal environments. J Mol Biol 328:419–428

    Article  PubMed  CAS  Google Scholar 

  • Dalluge JJ, Hamamoto T, Horikoshi K, Morita RY, Stetter KO, McCloskey JA (1997) Posttranscriptional modification of tRNA in psychrophilic bacteria. J Bacteriol 179:1918–1923

    PubMed  CAS  Google Scholar 

  • D’Amico S, Gerday C, Feller G (2001) Structural determinants of cold adaptation and stability in a large protein. J Biol Chem 276:25791–25796

    Article  PubMed  CAS  Google Scholar 

  • D’Amico S, Marx JC, Gerday C, Feller G (2003) Activity–stability relationships in extremophilic enzymes. J Biol Chem 278:7891–7896

    Article  PubMed  CAS  Google Scholar 

  • D’Amico S, Sohier JS, Feller G (2006a) Kinetics and energetics of ligand binding determined by microcalorimetry: insights into active site mobility in a psychrophilic alpha-amylase. J Mol Biol 358:1296–1304

    Article  CAS  Google Scholar 

  • D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006b) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389

    Article  CAS  Google Scholar 

  • Feller G, Gerday C (2003a) Catalysis and low temperatures: molecular adaptations. In: Gerday C, Glansdorff N (eds) Extremophiles (Life under extreme environmental Condition), Encyclopedia of Life Support Systems (EOLSS) Developed under the Auspices of the UNESCO. Eolss Publishers, Oxford, UK. http://www.eolss.net

  • Feller G, Gerday C (2003b) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208

    Article  CAS  Google Scholar 

  • Feller G, d’Amico D, Gerday C (1999) Thermodynamic stability of a cold-active α-amylase from the Antarctic bacterium Alteromonas haloplanctis. Biochemistry 38:4613–4619

    Article  PubMed  CAS  Google Scholar 

  • Fields PA, Somero GN (1998) Hot spots in cold adaptation: localized increases in conformational flexibility in lactate dehydrogenase A(4) orthologs of Antarctic notothenioid fishes. Proc Natl Acad Sci USA 95:11476–11481

    Article  PubMed  CAS  Google Scholar 

  • Galtier N, Lobry JR (1997) Relationships between genomic G + C content, RNA secondary structures, and optimal growth temperature in prokaryotes. J Mol Evol 44:632–636

    Article  PubMed  CAS  Google Scholar 

  • Georlette D, Damien B, Blaise V, Depiereux E, Uversky VN, Gerday C, Feller G (2003) Structural and functional adaptations to extreme temperatures in psychrophilic, mesophilic, and thermophilic DNA ligases. J Biol Chem 278:37015–37023

    Article  PubMed  CAS  Google Scholar 

  • Khachane AN, Timmis KN, dos Santos VA (2005) Uracil content of 16S rRNA of thermophilic and psychrophilic prokaryotes correlates inversely with their optimal growth temperatures. Nucleic Acids Res 33:4016–4022

    Article  PubMed  CAS  Google Scholar 

  • Kohen A, Cannio R, Bartolucci S, Klinman JP (1999) Enzyme dynamics and hydrogen tunnelling in a thermophilic alcohol dehydrogenase. Nature 399:496–499

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Nussinov R (2004) Experiment-guided thermodynamic simulations on reversible two-state proteins: implications for protein thermostability. Biophys Chem 111:235–246

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tsai CJ, Nussinov R (2001) Thermodynamic differences among homologous thermophilic and mesophilic proteins. Biochemistry 40:14152–14165

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tsai CJ, Nussinov R (2002) Maximal stabilities of reversible two-state proteins. Biochemistry 41:5359–5374

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tsai CJ, Nussinov R (2003) Temperature range of thermodynamic stability for the native state of reversible two-state proteins. Biochemistry 42:4864–4873

    Article  PubMed  CAS  Google Scholar 

  • Lonhienne T, Gerday C, Feller G (2000) Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility. Biochim Biophys Acta 1543:1–10

    PubMed  CAS  Google Scholar 

  • Makhatadze GI, Privalov PL (1995) Energetics of protein structure. Adv Protein Chem 47:307–425

    PubMed  CAS  Google Scholar 

  • Margesin R, Feller G, Gerday C, Russell NJ (2002) Cold-adapted microorganisms: adaptation strategies and biotechnological potential. In: Bitton G (eds) Encyclopedia of Environmental Microbiology (2). Wiley, New York, pp 871–885

    Google Scholar 

  • Privalov PL (1979) Stability of proteins: small globular proteins. Adv Protein Chem 33:167–241

    Article  PubMed  CAS  Google Scholar 

  • Privalov PL (1990) Cold denaturation of proteins. Crit Rev Biochem Mol Biol 25:281–305

    PubMed  CAS  Google Scholar 

  • Russell NJ (1997) Psychrophilic bacteria: molecular adaptations of membrane lipids. Comp Biochem Physiol A 118:489–493

    Article  CAS  Google Scholar 

  • Russell NJ (2003) Psychrophily and resistance to low temperature. In: Gerday C, Glansdorff N (eds) Extremophiles (Life under extreme environmental Condition), Encyclopedia of Life Support Systems (EOLSS) Developed under the Auspices of the UNESCO. Eolss Publishers, Oxford, UK. http://www.eolss.net

  • Russell NJ, Hamamoto T (1998) Psychrophiles. In: Horikoshi K, Grant D (eds) Extremophiles: microbial life in extreme environments. Wiley-Liss, New York, pp 25–45

    Google Scholar 

  • Shlyk-Kerner O, Samish I, Kaftan D, Holland N, Maruthi Sai PS, Kless H, Scherz A (2006) Protein flexibility acclimatizes photosynthetic energy conversion to the ambient temperature. Nature 442:827–830

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433

    Article  PubMed  CAS  Google Scholar 

  • Smalås AO, Leiros HK, Os V, Willassen NP (2000) Cold adapted enzymes. Biotechnol Annu Rev 6:1–57

    Article  PubMed  CAS  Google Scholar 

  • Tehei M, Franzetti B, Madern D, Ginzburg M, Ginzburg BZ, Giudici-Orticoni MT, Bruschi M, Zaccai G (2004) Adaptation to extreme environments: macromolecular dynamics in bacteria compared in vivo by neutron scattering. EMBO Rep 5:66–70

    Article  PubMed  CAS  Google Scholar 

  • Zavodszky P, Kardos J, Svingor, Petsko GA (1998) Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins. Proc Natl Acad Sci USA 95:7406–7411

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georges Feller.

Additional information

Communicated by D. A. Cowan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feller, G. Life at low temperatures: is disorder the driving force?. Extremophiles 11, 211–216 (2007). https://doi.org/10.1007/s00792-006-0050-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-006-0050-1

Keywords

Navigation