Skip to main content
Log in

The SPO1-related bacteriophages

Archives of Virology Aims and scope Submit manuscript

Abstract

A large and diverse group of bacteriophages has been termed ‘SPO1-like viruses’. To date, molecular data and genome sequences are available for Bacillus phage SPO1 and eight related phages infecting members of other bacterial genera. Many additional bacteriophages have been described as SPO1-related, but very few data are available for most of them. We present an overview of putative ‘SPO1-like viruses’ and shall discuss the available data in view of the recently proposed expansion of this group of bacteriophages to the tentative subfamily Spounavirinae. Characteristics of SPO1-related phages include (a) the host organisms are Firmicutes; (b) members are strictly virulent myoviruses; (c) all phages feature common morphological properties; (d) the phage genome consists of a terminally redundant, non-permuted dsDNA molecule of 127–157 kb in size; and (e) phages share considerable amino acid homology. The number of phages isolated consistent with these parameters is large, suggesting a ubiquitous nature of this group of viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ackermann H-W, Dubow M (1987) Viruses of prokaryotes I. General properties of bacteriophages. CRC Press, Boca Raton

    Google Scholar 

  2. Ackermann H-W, Dubow M (1987) Viruses of prokaryotes II: Natural groups of bacteriophages. CRC Press, Boca Raton

    Google Scholar 

  3. Ackermann H-W, Jolicoeur P, Berthiaume L (1974) Avantages et inconvénients de l’acétate d’uranyle en virologie comparée: étude de quatre bactériophages caudés. Can J Microbiol 20:1093–1099

    Article  CAS  PubMed  Google Scholar 

  4. Ackermann H-W (1975) Classification of the bacteriophages of Gram-positive cocci: Micrococcus, Staphylococcus, and Streptococcus. Pathol Biol (Paris) 23:247–253

    CAS  Google Scholar 

  5. Ackermann H-W, Cantor ED, Jarvis AW, Lembke J, Mayo JA (1984) New species definitions in phages of gram-positive cocci. Intervirology 22:181–190

    Article  CAS  PubMed  Google Scholar 

  6. Ackermann H-W, Greer GG, Rocourt J (1988) Morphology of Brochothrix thermosphacta phages. Microbios 56:19–26

    CAS  PubMed  Google Scholar 

  7. Ackermann H-W, Azizbekyan RR, Emadi Konjin HP, Lecadet MM, Seldin L, Yu MX (1994) New Bacillus bacteriophage species. Arch Virol 135:333–344

    Article  CAS  PubMed  Google Scholar 

  8. Ackermann H-W, Azizbekyan RR, Bernier RL, de Barjac H, Saindoux S, Valero JR, Yu MX (1995) Phage typing of Bacillus subtilis and B. thuringiensis. Res Microbiol 146:643–657

    Article  CAS  PubMed  Google Scholar 

  9. Ackermann H-W (2003) Bacteriophage observations and evolution. Res Microbiol 154:245–251

    Article  CAS  PubMed  Google Scholar 

  10. Ackermann H-W (2007) Salmonella phages examined in the electron microscope. Methods Mol Biol 394:213–234

    Article  CAS  PubMed  Google Scholar 

  11. Ackermann H-W (2007) 5500 Phages examined in the electron microscope. Arch Virol 152:227–243

    Article  CAS  PubMed  Google Scholar 

  12. Ackermann H-W (2009) Phage classification and characterization. Methods Mol Biol 501:127–140

    Article  CAS  PubMed  Google Scholar 

  13. Ackermann H-W, Heldal M (2010) Basic electron microscopy of aquatic viruses. In: Suttle C, Weinbauer M (eds) Manual of aquatic virus ecology. American Society of Limnology and Oceanography, Waco, pp 182–192

    Chapter  Google Scholar 

  14. Ahmed R, Sankar-Mistry P, Jackson S, Ackermann H-W, Kasatiya SS (1995) Bacillus cereus phage typing as an epidemiological tool in outbreaks of food poisoning. J Clin Microbiol 33:636–640

    CAS  PubMed  Google Scholar 

  15. Alemayehu D, Ross RP, O’Sullivan O, Coffey A, Stanton C, Fitzgerald GF, McAuliffe O (2009) Genome of a virulent bacteriophage Lb338–1 that lyses the probiotic Lactobacillus paracasei cheese strain. Gene 448:29–39

    Article  CAS  PubMed  Google Scholar 

  16. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  17. Andriashvili IA, Kalandarishvili LL, Kvachadze LI, Karasev AV (1983) A new type of DNA structural organization in the composition of bacteriophage Sb-1 particles. Vopr Virusol 3:359–362

    PubMed  Google Scholar 

  18. Arwert F, Venema G (1974) Transfection of Bacillus subtilis with bacteriophage H1 DNA: fate of transfecting DNA and transfection enhancement in B. subtilis uur+ and uur− strains. Mol Gen Genet 128:55–72

    Article  CAS  PubMed  Google Scholar 

  19. Azizbekyan RR, Belyaeva NN, Kriviskii AS, Tikhonenko AS (1966) On the structure of Bacillus subtilis phages and their host’s lysogeny. Mikrobiologiya 35:279–286

    Google Scholar 

  20. Azizbekyan RR, Bogdanova TL, Minenkova IB, Mikhailov AA, Smirnov VB, Yakubova RM (1977) Characteristics of phages of spore-forming bacteria isolated from soil. Mikrobiologiya 46:554–559

    Google Scholar 

  21. Bamford DH, Grimes JM, Stuart DI (2005) What does structure tell us about virus evolution? Curr Opin Struct Biol 15:655–663

    Article  CAS  PubMed  Google Scholar 

  22. Biswal N, Kleinschmidt AK, Spatz HC, Trautner TA (1967) Physical properties of the DNA of bacteriophage SP50. Mol Gen Genet 100:39–55

    Article  CAS  PubMed  Google Scholar 

  23. Black BC, Brown DT (1986) Morphology of Staphylococcus bacteriophage P 1. Arch Virol 91:313–327

    Article  CAS  PubMed  Google Scholar 

  24. Brandis H, Lenz W (1984) Staphylokokken Bakteriophagen. In: Meyer W (ed) Staphylokokken und Staphylokokken Erkrankungen. Fischer, Jena, pp 186–214

    Google Scholar 

  25. Carlton RM, Noordman WH, Biswas B, de Meester ED, Loessner MJ (2005) Bacteriophage P100 for control of Listeria monocytogenes in foods: genome sequence, bioinformatic analyses, oral toxicity study, and application. Regul Toxicol Pharmacol 43:301–312

    Article  CAS  PubMed  Google Scholar 

  26. Casjens SR, Gilcrease EB, Winn-Stapley DA, Schicklmaier P, Schmieger H, Pedulla ML, Ford ME, Houtz JM, Hatfull GF, Hendrix RW (2005) The generalized transducing Salmonella bacteriophage ES18: complete genome sequence and DNA packaging strategy. J Bacteriol 187:1091–1104

    Article  CAS  PubMed  Google Scholar 

  27. Cerca N, Oliveira R, Azeredo J (2007) Susceptibility of Staphylococcus epidermidis planktonic cells and biofilms to the lytic action of Staphylococcus bacteriophage K. Lett Appl Microbiol 45:313–317

    Article  CAS  PubMed  Google Scholar 

  28. Chanishvili TG, Andriashvili IA, Adamiya RS, Tushisvili DG, Pataridze TK (1980) Morphological and physion-chemical characteristics of staphylococcal bacteriophage Sb-1 virions. Vopr Virusol 1:95–97

    PubMed  Google Scholar 

  29. Chibani-Chennoufi S, Dillmann ML, Marvin-Guy L, Rami-Shojaei S, Brussow H (2004) Lactobacillus plantarum bacteriophage LP65: a new member of the SPO1-like genus of the family Myoviridae. J Bacteriol 186:7069–7083

    Article  CAS  PubMed  Google Scholar 

  30. Coene M, Hoet P, Cocito C (1983) Physical map of phage 2 C DNA: evidence for the existence of large redundant ends. Eur J Biochem 132:69–75

    Article  CAS  PubMed  Google Scholar 

  31. Coman I, Stiube P, Dimitriu C (1969) Bactériophages défectifs chez Bacillus mycoides. Arch Roum Pathol Exp Microbiol 28:857–866

    CAS  PubMed  Google Scholar 

  32. Constantinesco SP, Petrovici A, Pleceas P, Bogdan C (1969) Aspects morphologiques des phages entérococciques. Arch Roum Pathol Exp Microbiol 28:784–793

    CAS  PubMed  Google Scholar 

  33. Davison PF (1963) The structure of bacteriophage SP8. Virology 21:146–151

    Article  CAS  PubMed  Google Scholar 

  34. de Barjac H, Sisman J, Cosmao-Dumanoir V (1974) Description of 12 bacteriophages isolated from Bacillus thuringiensis. C R Acad Sci Hebd Seances Acad Sci D 279:1939–1942

    PubMed  Google Scholar 

  35. Dorscht J, Klumpp J, Bielmann R, Schmelcher M, Born Y, Zimmer M, Calendar R, Loessner MJ (2009) Comparative genome analysis of Listeria bacteriophages reveals extensive mosaicism, programmed translational frameshifting, and a novel prophage insertion site. J Bacteriol 191:7206–7215

    Article  CAS  PubMed  Google Scholar 

  36. Duda RL, Hendrix RW, Huang WM, Conway JF (2006) Shared architecture of bacteriophage SPO1 and herpesvirus capsids. Curr Biol 16:R11–R13

    Article  CAS  PubMed  Google Scholar 

  37. Eyer L, Pantucek R, Zdrahal Z, Konecna H, Kasparek P, Ruzickova V, Hernychova L, Preisler J, Doskar J (2007) Structural protein analysis of the polyvalent staphylococcal bacteriophage 812. Proteomics 7:64–72

    Article  CAS  PubMed  Google Scholar 

  38. Foeldes J, Trautner TA (1964) Infectious DNA from a newly isolated B. subtilis phage. Z Vererbungsl 95:57–65

    Article  CAS  PubMed  Google Scholar 

  39. Götz F, Popp F, Schleifer KH (1984) Isolation and characterization of a virulent bacteriophage from Staphylococcus carnosus. FEMS Microbiol Lett 23:303–307

    Article  Google Scholar 

  40. Green DM (1966) Physical and genetic characterization of sheared infective SP82 bacteriophage DNA. J Mol Biol 22:15–22

    Article  CAS  Google Scholar 

  41. Greer GG (1983) Psychrotrophic Brochothrix thermosphacta bacteriophages isolated from beef. Appl Environ Microbiol 46:245–251

    CAS  PubMed  Google Scholar 

  42. Hambly E, Tétart F, Desplats C, Wilson WH, Krisch HM, Mann NH (2001) A conserved genetic module that encodes the major virion components in both the coliphage T4 and the marine cyanophage S-PM2. Proc Natl Acad Sci USA 98:11411–11416

    Article  CAS  PubMed  Google Scholar 

  43. He N-B, Chen J-Z, Lin C-C (1978) Six distinct types of bacteriophage attacking Bacillus thuringiensis. Acta Microbiol Sin 18:220–224

    Google Scholar 

  44. Hemphill HE, Whiteley HR, Brown LR, Doi RH (1969) The effect of rifampin on the production of beta22 phage by Bacillus subtilis. Biochem Biophys Res Commun 37:559–566

    Article  CAS  PubMed  Google Scholar 

  45. Hemphill HE, Whiteley HR (1975) Bacteriophages of Bacillus subtilis. Bacteriol Rev 39:257–315

    CAS  PubMed  Google Scholar 

  46. Hendrix R, Casjens S (2005) Caudovirales. In: Fauquet CM, Mayo JA, Maniloff J, Desselberger U, Ball A (eds) Virus taxonomy VIII report of the international committee on taxonomy of viruses, pp 35–42

  47. Hoet PP, Coene MM, Cocito CG (1992) Replication cycle of Bacillus subtilis hydroxymethyluracil-containing phages. Annu Rev Microbiol 46:95–116

    Article  CAS  PubMed  Google Scholar 

  48. Jarvis AW, Collins LJ, Ackermann H-W (1993) A study of five bacteriophages of the Myoviridae family which replicate on different gram-positive bacteria. Arch Virol 133:75–84

    Article  CAS  PubMed  Google Scholar 

  49. Kallen RG, Simon M, Marmur J (1962) The new occurrence of a new pyrimidine base replacing thymine in a bacteriophage DNA:5-hydroxymethyl uracil. J Mol Biol 5:248–250

    Article  CAS  Google Scholar 

  50. Keggins KM, Nauman RK, Lovett PS (1978) Sporulation-converting bacteriophages for Bacillus pumilus. J Virol 27:819–822

    CAS  PubMed  Google Scholar 

  51. Keogh BP, Shimmin PD (1974) Morphology of the bacteriophages of lactic streptococci. Appl Microbiol 27:411–415

    CAS  PubMed  Google Scholar 

  52. Kilcher S, Loessner MJ, Klumpp J (2010) Brochothrix thermosphacta bacteriophages feature heterogeneous and highly mosaic genomes and utilize unique prophage insertion sites. J Bacteriol (accepted)

  53. Klumpp J, Dorscht J, Lurz R, Bielmann R, Wieland M, Zimmer M, Calendar R, Loessner MJ (2008) The terminally redundant, nonpermuted genome of Listeria bacteriophage A511: a model for the SPO1-like myoviruses of gram-positive bacteria. J Bacteriol 190:5753–5765

    Article  CAS  PubMed  Google Scholar 

  54. Kwan T, Liu J, DuBow M, Gros P, Pelletier J (2005) The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc Natl Acad Sci USA 102:5174–5179

    Article  CAS  PubMed  Google Scholar 

  55. LaMontagne JR, McDonald WC (1972) A bacteriophage of Bacillus subtilis which forms plaques only at temperatures above 50 C. I. Physical and chemical characteristics of TSP-1. J Virol 9:646–651

    CAS  PubMed  Google Scholar 

  56. Lapchine L, Enjalbert L (1965) Étude morphologique de quelques phages staphylococciques. J Microscopie 4:33–42

    Google Scholar 

  57. Lavigne R, Seto D, Mahadevan P, Ackermann H-W, Kropinski AM (2008) Unifying classical and molecular taxonomic classification: analysis of the Podoviridae using BLASTP-based tools. Res Microbiol 159:406–414

    Article  CAS  PubMed  Google Scholar 

  58. Lavigne R, Darius P, Summer EJ, Seto D, Mahadevan P, Nilsson AS, Ackermann H-W, Kropinski AM (2009) Classification of Myoviridae bacteriophages using protein sequence similarity. BMC Microbiol 9:224

    Article  PubMed  CAS  Google Scholar 

  59. Liljemark WF, Anderson DL (1970) Structure of Bacillus subtilis bacteriophage phi25 and φ25 deoxyribonucleic acid. J Virol 6:107–113

    CAS  PubMed  Google Scholar 

  60. Loessner M, Rees CE (2005) Listeria phages: basics and applications. In: Waldor MK, Friedman DI, Adhya SL (eds) Phages: their role in bacterial pathogenesis and biotechnology. ASM Press, Washington, DC, pp 362–379

    Google Scholar 

  61. Loessner MJ (1991) Improved procedure for bacteriophage typing of Listeria strains and evaluation of new phages. Appl Environ Microbiol 57:882–884

    CAS  PubMed  Google Scholar 

  62. Loessner MJ, Estela LA, Zink R, Scherer S (1994) Taxonomical classification of 20 newly isolated Listeria bacteriophages by electron microscopy and protein analysis. Intervirology 37:31–35

    CAS  PubMed  Google Scholar 

  63. Loessner MJ, Maier SK, Daubek-Puza H, Wendlinger G, Scherer S (1997) Three Bacillus cereus bacteriophage endolysins are unrelated but reveal high homology to cell wall hydrolases from different bacilli. J Bacteriol 179:2845–2851

    CAS  PubMed  Google Scholar 

  64. Loessner MJ, Inman RB, Lauer P, Calendar R (2000) Complete nucleotide sequence, molecular analysis and genome structure of bacteriophage A118 of Listeria monocytogenes: implications for phage evolution. Mol Microbiol 35:324–340

    Article  CAS  PubMed  Google Scholar 

  65. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    Article  CAS  PubMed  Google Scholar 

  66. Ludwig W, Schleifer KH, Stackebrandt E (1984) 16 rRNA analysis of Listeria monocytogenes and Brochothrix thermosphacta. FEMS Microbiol Lett 25:199–204

    Article  Google Scholar 

  67. May P, May E, Granboulan P, Granboulan N, Marmur J (1968) Ultrastructure of bacteriophage 2C and properties of its DNA. Ann Inst Pasteur (Paris) 115:1029–1046

    CAS  Google Scholar 

  68. Meekins WE, Blouse LE (1969) Classification and properties of four bacteriophages lysing Staphylococcus aureus isolated from dogs. Am J Vet Res 30:917–921

    CAS  PubMed  Google Scholar 

  69. Merabishvili M, Pirnay JP, Verbeken G, Chanishvili N, Tediashvili M, Lashkhi N, Glonti T, Krylov V, Mast J, Van Parys L, Lavigne R, Volckaert G, Mattheus W, Verween G, De Corte P, Rose T, Jennes S, Zizi M, De Vos D, Vaneechoutte M (2009) Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS One 4:e4944

    Article  PubMed  CAS  Google Scholar 

  70. Milne RG, Trautner TA (1967) Thin sectioning and electron microscopy of SP50 bacteriophage adsorbed to Bacillus subtilis. J Ultrastruct Res 20:267–276

    Article  CAS  PubMed  Google Scholar 

  71. Naroditsky BS, Gofman YP, Sheludchenko VB, Tikhonenko TI (1969) Some biological and chemical characteristics of bacteriophage SW lysing Bacillus subtilis. Vopr Virusol 14:469–475

    Google Scholar 

  72. O’Flaherty S, Coffey A, Edwards R, Meaney W, Fitzgerald GF, Ross RP (2004) Genome of staphylococcal phage K: a new lineage of Myoviridae infecting gram-positive bacteria with a low G + C content. J Bacteriol 186:2862–2871

    Article  PubMed  CAS  Google Scholar 

  73. O’Flaherty S, Ross RP, Meaney W, Fitzgerald GF, Elbreki MF, Coffey A (2005) Potential of the polyvalent anti-Staphylococcus bacteriophage K for control of antibiotic-resistant staphylococci from hospitals. Appl Environ Microbiol 71:1836–1842

    Article  PubMed  CAS  Google Scholar 

  74. Okubo S, Strauss B, Stodolsky M (1964) The possible role of recombination in the infection of competent Bacillus subtilis by bacteriophage deoxyribonucleic acid. Virology 24:552–562

    Article  CAS  PubMed  Google Scholar 

  75. Okubo S (1966) Bacteriophage of Bacillus subtilis. Tanpakushitsu Kakusan Koso 11:572–578

    CAS  PubMed  Google Scholar 

  76. Okubo S, Yanagida T, Fujita DJ, Olsson-Wilhelm BM (1972) The genetics of bacteriophage SPO1. Biken J 15:81–97

    CAS  PubMed  Google Scholar 

  77. Panganiban AT, Whiteley HR (1981) Analysis of bacteriophage SP82 major ‘early’ in vitro transcripts. J Virol 37:372–382

    CAS  PubMed  Google Scholar 

  78. Pantucek R, Rosypalova A, Doskar J, Kailerova J, Ruzickova V, Borecka P, Snopkova S, Horvath R, Gotz F, Rosypal S (1998) The polyvalent staphylococcal phage phi 812: its host-range mutants and related phages. Virology 246:241–252

    Article  CAS  PubMed  Google Scholar 

  79. Parker ML, Eiserling FA (1983) Bacteriophage SPO1 structure and morphogenesis. I. Tail structure and length regulation. J Virol 46:239–249

    CAS  PubMed  Google Scholar 

  80. Parker ML, Ralston EJ, Eiserling FA (1983) Bacteriophage SPO1 structure and morphogenesis. II. Head structure and DNA size. J Virol 46:250–259

    CAS  PubMed  Google Scholar 

  81. Pillich J, Pulverer G, Vojtiskova M (1976) Activity of polyvalent staphylococcal bacteriophages. Zentralbl Bakteriol Parasit Infekt Hyg I Abt Suppl 5:81–86

    Google Scholar 

  82. Pohjanpelto P, Nyholm M (1965) Fine structure of Subtilis phage SP-50. Arch Ges Virusforsch 17:481–487

    Article  CAS  PubMed  Google Scholar 

  83. Rees PJ, Fry BA (1981) The morphology of staphylococcal bacteriophage K and DNA metabolism in infected Staphylococcus aureus. J Gen Virol 53:293–307

    Article  CAS  PubMed  Google Scholar 

  84. Rees PJ, Fry BA (1983) Structure and properties of the rapidly sedimenting replicating complex of staphylococcal phage K DNA. J Gen Virol 64(Pt 1):191–198

    Article  CAS  PubMed  Google Scholar 

  85. Reznikoff WS, Thomas CA Jr (1969) The anatomy of the SP50 bacteriophage DNA molecule. Virology 37:309–317

    Article  CAS  PubMed  Google Scholar 

  86. Rima BK, Steensma HY (1971) Bacteriophages of Bacillus subtilis: comparison of different isolation techniques and possible use for classification of Bacillus subtilis strains. Antonie Van Leeuwenhoek 37:425–434

    Article  CAS  PubMed  Google Scholar 

  87. Romig WR, Brodetsky AM (1961) Isolation and preliminary characterization of bacteriophages for Bacillus subtilis. J Bacteriol 82:135–141

    CAS  PubMed  Google Scholar 

  88. Rosenblum ED, Tyrone S (1964) Serology, density, and morphology of staphylococcal phages. J Bacteriol 88:1737–1742

    CAS  PubMed  Google Scholar 

  89. Schreier HJ, Vonada EK, Yasbin RE, Bernlohr RW (1982) Isolation and characterization of a bacteriophage for Bacillus lichenformis A5. Curr Microbiol 7:103–106

    Article  CAS  Google Scholar 

  90. Schumacher-Perdreau F, Pulverer G, Schleifer KH (1978) The phage adsorption test: a simple method for differentiation between staphylococci and micrococci. J Infect Dis 138:392–395

    CAS  PubMed  Google Scholar 

  91. Shimizu N, Miura K, Aoki H (1970) Characterization of Bacillus subtilis bacteriophage. J Biochem 68:265–276

    CAS  PubMed  Google Scholar 

  92. Slopek S, Krzywy T (1985) Morphology and ultrastructure of bacteriophages. An electron microscopic study. Arch Immunol Ther Exp (Warsz) 33:1–217

    CAS  Google Scholar 

  93. Smirnova TA, Netyksa EM, Minenkova IB, Smirnov BB, Azizbekian RR (1979) Electron microscopic study of the interaction between phages and Bacillus thuringiensis cells. Mikrobiologiia 48:880–886

    CAS  PubMed  Google Scholar 

  94. Sonnhammer EL, Durbin R (1995) A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene 167:GC1–GC10

    Article  CAS  PubMed  Google Scholar 

  95. Stackebrandt E, Jones D (2006) The Genus Brochothrix. In: Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E, Dworkin M (eds) The Prokaryotes. Springer, New York, pp 477–491

    Chapter  Google Scholar 

  96. Stewart CR, Gaslightwala I, Hinata K, Krolikowski KA, Needleman DS, Peng AS, Peterman MA, Tobias A, Wei P (1998) Genes and regulatory sites of the ‘host-takeover module’ in the terminal redundancy of Bacillus subtilis bacteriophage SPO1. Virology 246:329–340

    Article  CAS  PubMed  Google Scholar 

  97. Stewart CR, Casjens SR, Cresawn SG, Houtz JM, Smith AL, Ford ME, Peebles CL, Hatfull GF, Hendrix RW, Huang WM, Pedulla ML (2009) The genome of Bacillus subtilis bacteriophage SPO1. J Mol Biol 388:48–70

    Article  CAS  PubMed  Google Scholar 

  98. Stiube P, Dimitriu C (1969) Etudes au microscope électronique des bactériophages cereus-anthracis-mycoides (CAM) mésophiles et psychrophiles. Arch Roum Pathol Exp Microbiol 28:809–821

    CAS  PubMed  Google Scholar 

  99. Terzaghi BE (1976) Morphologies and host sensitivities of lactic streptococcal phages from cheese factories. N Z J Dairy Sci Technol 11:155–163

    Google Scholar 

  100. Thorne CB (1968) Transducing bacteriophage for Bacillus cereus. J Virol 2:657–662

    CAS  PubMed  Google Scholar 

  101. Thorne CB, Holt SC (1974) Cold lability of Bacillus cereus bacteriophage CP-51. J Virol 14:1008–1012

    CAS  PubMed  Google Scholar 

  102. Thorne CB (1978) Transduction in Bacillus thuringiensis. Appl Environ Microbiol 35:1109–1115

    CAS  PubMed  Google Scholar 

  103. Tikhonenko AS (1970) Ultrastructure of bacterial viruses. Plenum Press, New York

    Google Scholar 

  104. Tkadlecek L, Pillich J, Pulverer G (1978) Electron microscopic morphology of phages of coagulase-negative staphylococci. Zentralbl Bakteriol Parasit Infekt Hyg Abt 1 Org A 241:8–16

    Google Scholar 

  105. Tkadlecek L, Pillich J, Peters G, Pulverer G (1981) Electron microscopic morphology of phages of staphylococci and micrococci. In: Jeljaszewicz J (ed) Staphylococci and Staphylococcal Infections. Fischer, Stuttgart, pp 103–107

    Google Scholar 

  106. Trevors KE, Holley RA, Kempton AG (1983) Isolation and characterization of a Lactobacillus plantarum bacteriophage isolated from a meat starter culture. J Appl Bacteriol 54:281–288

    Google Scholar 

  107. Truffaut N, Revet B, Soulie MO (1970) Comparative study of the DNA of phages 2C, SP8*, SP82, phi e, SP01 and SP50. Eur J Biochem 15:391–400

    Article  CAS  PubMed  Google Scholar 

  108. Uchida K, Kanbe C (1993) Occurrence of bacteriophages lytic for Pediococcus halophilus, a halophilic lactic-acid bacterium, in soy sauce fermentation. J Gen Appl Microbiol 39:429–437

    Article  CAS  Google Scholar 

  109. Uchiyama J, Rashel M, Maeda Y, Takemura I, Sugihara S, Akechi K, Muraoka A, Wakiguchi H, Matsuzaki S (2008) Isolation and characterization of a novel Enterococcus faecalis bacteriophage phiEF24C as a therapeutic candidate. FEMS Microbiol Lett 278:200–206

    Article  CAS  PubMed  Google Scholar 

  110. Uchiyama J, Rashel M, Takemura I, Wakiguchi H, Matsuzaki S (2008) In silico and in vivo evaluation of bacteriophage phiEF24C, a candidate for treatment of Enterococcus faecalis infections. Appl Environ Microbiol 74:4149–4163

    Article  CAS  PubMed  Google Scholar 

  111. van der Mee-Marquet N, Loessner M, Audurier A (1997) Evaluation of seven experimental phages for inclusion in the international phage set for the epidemiological typing of Listeria monocytogenes. Appl Environ Microbiol 63:3374–3377

    PubMed  Google Scholar 

  112. Vieu JF, Croissant O, Dauguet C (1963) On morphology of the Twort bacteriophage under the electron microscope. C R Hebd Seances Acad Sci 8:553–555

    Google Scholar 

  113. Walter MH, Baker DD (2003) Three Bacillus anthracis bacteriophages from topsoil. Curr Microbiol 47:55–58

    Article  CAS  PubMed  Google Scholar 

  114. Yehle CO, Doi RH (1967) Differential expression of bacteriophage genomes in vegetative and sporulating cells of Bacillus subtilis. J Virol 1:935–947

    CAS  PubMed  Google Scholar 

  115. Yelton DB, Thorne CB (1970) Transduction in Bacillus cereus by each of two bacteriophages. J Bacteriol 102:573–579

    CAS  PubMed  Google Scholar 

  116. Yelton DB, Thorne CB (1971) Comparison of Bacillus cereus bacteriophages CP-51 and CP-53. J Virol 8:242–253

    CAS  PubMed  Google Scholar 

  117. Zimmer M, Sattelberger E, Inman RB, Calendar R, Loessner MJ (2003) Genome and proteome of Listeria monocytogenes phage PSA: an unusual case for programmed +1 translational frameshifting in structural protein synthesis. Mol Microbiol 50:303–317

    Article  CAS  PubMed  Google Scholar 

  118. Zink R, Loessner MJ (1992) Classification of virulent and temperate bacteriophages of Listeria spp. on the basis of morphology and protein analysis. Appl Environ Microbiol 58:296–302

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Richard Calendar, University of California at Berkeley, USA, and Dr. Charles Stewart, Rice University, Houston, USA, for helpful suggestions and Dr. Rudi Lurz, Max Planck Institute for Molecular Genetics, Berlin, Germany for some electron micrographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Klumpp.

Additional information

The ‘O’ in the name SPO1 probably represents the letter ‘O’ from the city of Osaka, where SPO1 was isolated. In the published literature, the number zero ‘0’ has occasionally been used instead, making it necessary to use both forms of the name for literature searches and database mining.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klumpp, J., Lavigne, R., Loessner, M.J. et al. The SPO1-related bacteriophages. Arch Virol 155, 1547–1561 (2010). https://doi.org/10.1007/s00705-010-0783-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-010-0783-0

Keywords

Navigation