Skip to main content
Log in

Alterations of oxidative stress markers and apoptosis markers in the striatum after transient focal cerebral ischemia in rats

  • Basic Neurosciences, Genetics and Immunology - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Cumulative evidence demonstrates that apoptosis caused by oxidative stress plays a key role in neuronal cell death after transient focal cerebral ischemia. In this study, we investigated exactly the immunohistochemical alterations of neuronal nuclei (NeuN), Cu/Zn-SOD (superoxide dismutase), Mn-SOD, 4-hydroxy-2-nonenal (HNE), and single strand DNA (ssDNA) in the striatum from 3 h up to 15 days after transient focal cerebral ischemia in rats under the same conditions. A conspicuous decrease of NeuN immunoreactive neurons was observed in the ipsilateral striatum from 3 h up to 15 days after focal ischemia. For Cu/Zn-SOD, Mn-SOD and HNE immunostainings, the alteration of Cu/Zn-SOD and HNE immunoreactivity was more pronounced than that of Mn-SOD immunoreactivity in the shrunken or atrophic neurons of ipsilateral striatum 3 h after focal ischemia. Thereafter, a significant increase of HNE immunoreactivity was observed in the shrunken or atrophic neurons of ipsilateral striatum up to 15 days after focal ischemia. In contrast, a significant decrease of Cu/Zn-SOD immunoreactivity was found in the ipsilateral striatum from 3 up to 15 days after focal ischemia. On the other hand, a significant increase of Mn-SOD immunereactivity was observed in the ipsilateral striatum from 1 up to 7 days after focal ischemia. In addition, our Western blot analysis also showed a significant increase of Cu/Zn-SOD and Mn-SOD in the ipsilateral striatum 1 day after focal ischemia, as compared to sham-operated group. In contrast, a significant increase in the number of ssDNA immunoreactive apoptotic neurons was observed in the ipsilateral striatum from 3 h to 3 days after focal cerebral ischemia. The present results also suggest that increased reactive oxygen species (ROS) production during reperfusion may contribute to the induction of the alteration of lipid peroxidation and could thereby lead to apoptosis in neurons of the ipsilateral striatum after transient focal ischemia, because of an insufficient expression of Cu/Zn-SOD and Mn-SOD. Furthermore, our findings demonstrate that the lipid peroxidation against mitochondrial membrane may contribute to apoptosis of striatal neurons after transient focal ischemia. Thus our findings demonstrate that the protection of lipid peroxidation against mitochondrial membrane may offer a novel therapeutic strategy for brain stroke in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Sugawara T, Fujimura M, Morita-Fujimura Y, Kawase M, Chan PH (1999) Mitochondrial release of cytochrome c corresponds to the selective vulnerability of hippocampal CA1 neurons in rats after transient global cerebral ischemia. J Neurosci 19:RC39: 1–6

    Google Scholar 

  • Abe K, Araki T, Kogure K (1988) Recovery from edema and of protein synthesis differs between in the cortex and caudate following transient focal cerebral ischemia in rats. J Neurochem 51:1470–1476

    Article  PubMed  CAS  Google Scholar 

  • Araki T, Kato H, Shuto K, Itoyama Y (1998) Alterations in [3H]L-NG-nitroarginine binding in brain after transient global or transient focal ischemia in gerbils and rats. Eur J Pharmacol 354:153–159

    Article  PubMed  CAS  Google Scholar 

  • Aronowski J, Strong R, Grotta JC (1997) Reperfusion injury: demonstration of brain damage produced by reperfusion after transient focal ischemia in rats. J Cereb Blood Flow Metab 17:1048–1056

    Article  PubMed  CAS  Google Scholar 

  • Chan PH (1994) Oxygen radicals in focal cerebral ischemia. Brain Pathol 4:59–65

    PubMed  CAS  Google Scholar 

  • Chan PH (1996) Role of oxidants in ischemic brain damage. Stroke 27:1124–1129

    PubMed  CAS  Google Scholar 

  • Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21:2–14

    Article  PubMed  CAS  Google Scholar 

  • Chan PH, Kawase M, Murakami K, Chen SF, Li Y, Calagui B, Reola L, Carlson E, Epstein CJ (1998) Overexpression of SOD1 in transgenic rats protects vulnerable neurons against ischemic damage after global cerebral ischemia and reperfusion. J Neurosci 18:8292–8299

    PubMed  CAS  Google Scholar 

  • Dykens JA (1994) Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated Ca2+ and Na+: implications for neurodegeneration. J Neurochem 63:584–591

    Article  PubMed  CAS  Google Scholar 

  • Estebauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128

    Article  Google Scholar 

  • Fujimura M, Morita-Fujimura Y, Copin JC, Copin JC, Kawase M, Chen PH (1999) Copper-zinc superoxide dismutase prevents the early decrease of apurinic/apyrimidinic endonuclease and subsequent DNA fragmentation after transient focal cerebral ischemia in mice. Stroke 30:2408–2415

    PubMed  CAS  Google Scholar 

  • Fujimura M, Morita-Fujimura Y, Noshita N, Sugawara T, Kawase M, Chan PH (2000) The cytosolic antioxidant copper/zinc-superoxide dismutase prevents the early release of mitochondrial cytochrome c in ischemic brain after transient cerebral ischemia in mice. J Neurosci 20:2817–2824

    PubMed  CAS  Google Scholar 

  • Himeda T, Mizuno K, Kato H, Araki T (2005) Effect of age on immunohistochemical changes in the mouse hippocampus. Mech Ageing Dev 126:673–677

    Article  PubMed  CAS  Google Scholar 

  • Hudgins WR, Garcia JH (1970) Transorbital approach to the middle cerebral artery of the squirel monkey: a technique for experimental cerebral infarction applicable to ultrastructural studies. Stroke 1:107–111

    PubMed  CAS  Google Scholar 

  • Kametsu Y, Osuga S, Hakim AM (2003) Apoptosis occurs in the penumbra zone during short-duration focal ischemia in the rat. J Cereb Blood Flow Metab 23:416–422

    Article  PubMed  Google Scholar 

  • Keller JN, Kindy MS, Holtsberg FW, St Clair DK, Yen HC, Germeyer A, Steiner SM, Bruce-Keller AJ, Hutchins JB, Mattson MP (1998) Mitochondrial manganese superoxide dismutase prevents neuronal apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci 18:687–697

    PubMed  CAS  Google Scholar 

  • Kinouchi H, Epstein CJ, Mizui T, Carlson E, Chen SF, Chan PH (1991) Attenuation of focal cerebral ischemic injury in transgenic mice overexpressing Cu/Zn superoxide dismutase. Proc Natl Acad Sci USA 88:11158–11162

    Article  PubMed  CAS  Google Scholar 

  • Komine-Kobayashi M, Chou N, Mochizuki H, Nakano A, Mizuno Y, Urabe T (2004) Dual role of Fcγ receptor in transient focal cerebral ischemia in mice. Stroke 35:958–963

    Article  PubMed  CAS  Google Scholar 

  • Kontos HA (2001) Oxygen radicals in cerebral ischemia. Stroke 11:2712–2716

    Article  Google Scholar 

  • Kurosaki R, Muramatsu Y, Kato H, Watanabe Y, Imai Y, Itoyama Y, Araki T (2005) Effect of angiotensin-converting enzyme inhibitor perindopril on interneurons in MPTP-treated mice. Eur Neuropsychopharmacol 15:57–67

    Article  PubMed  CAS  Google Scholar 

  • Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91

    PubMed  CAS  Google Scholar 

  • Love S (1999) Oxidative stress in brain ischemia. Brain Pathol 9:119–131

    PubMed  CAS  Google Scholar 

  • Martin LJ, Al-Abdulla NA, Brambrink AM, Kirsch JR, Sieber FE, Portera-Cailliau C (1998) Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: a perspective on the contributions of apoptosis and necrosis. Brain Res Bull 46:281–309

    Article  PubMed  CAS  Google Scholar 

  • Morikawa S, Kurauchi O, Tanaka M, Yoneda M, Uchida K, Itakura A, Furugori K, Mizutani S, Tomoda Y (1997) Increased mitochondrial damage by lipid peroxidation in trophoblast cells of preeclamptic placentas. Biochem Mol Biol Int 41:767–775

    PubMed  CAS  Google Scholar 

  • Noshita N, Sugawara T, Hayashi T, Lewen A, Omar G, Chan PH (2002) Copper/zinc superoxide dismutase attenuates neuronal cell death by preventing extracellular signal-regulated kinase activation after transient focal cerebral ischemia in mice. J Neurosci 22:7923–7930

    PubMed  CAS  Google Scholar 

  • O’Brien RG, Waltz AG (1973) Transorbital approach for occluding the middle cerebral artery without craniectomy. Stroke 4:201–206

    PubMed  Google Scholar 

  • Oliver CN, Starke-Reed PE, Stadtman ER, Liu GJ, Carney JM, Floyd RA (1990) Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain. Proc Natl Acad Sci USA 87:5144–5147

    Article  PubMed  CAS  Google Scholar 

  • Sakuma M, Hayakawa N, Kato H, Araki T (2008) Time dependent changes of striatal interneurons after focal cerebral ischemia. J Neural Transm 115:413–422

    Article  PubMed  CAS  Google Scholar 

  • Siesjo BK, Agardh CD, Bengtsson F (1989) Free radicals and brain damage. Cerebrovasc Brain Metab Rev 1:165–211

    PubMed  CAS  Google Scholar 

  • Takagi S, Hayakawa N, Kimoto H, Kato H, Araki T (2007) Damage to oligodendrocytes in the striatum after MPTP neurotoxicity in mice. J Neural Transm 114:1553–1557

    Article  PubMed  CAS  Google Scholar 

  • White RJ, Reynolds IJ (1996) Mitochondrial depolarization in glutamate-stimulated neurons: an early signal specific to excitotoxin exposure. J Neurosci 16:5688–5697

    PubMed  CAS  Google Scholar 

  • Yang G, Chan PH, Chen J, Carlson E, Chen SF, Weinstein P, Epstein CJ, Kamii H (1994) Human copper-zinc superoxide dismutase transgenic mice are highly resistant to reperfusion injury after focal cerebral ischemia. Stroke 25:165–170

    PubMed  Google Scholar 

  • Yoshino H, Hattori N, Urabe T, Uchida K, Tanaka M, Mizuno Y (1997) Postischemic accumulation of lipid peroxydation products in the rat brain: immunohistochemical detection of 4-hydroxy-2-nonenal modified proteins. Brain Res 767:81–86

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a Grant-in-Aid for Scientific Research (13671095 and 13670627) from the Ministry of Science and Education in Japan. We thank Mio Sakuma for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Araki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuda, S., Umeda, M., Uchida, H. et al. Alterations of oxidative stress markers and apoptosis markers in the striatum after transient focal cerebral ischemia in rats. J Neural Transm 116, 395–404 (2009). https://doi.org/10.1007/s00702-009-0194-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-009-0194-0

Keywords

Navigation