Skip to main content
Log in

Study of Strain Rate and Thermal Damage of Dholpur Sandstone at Elevated Temperature

  • Technical Note
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Alm O (1985) The influence of micro crack density on the elastic and fracture mechanical properties of stripa granite. Phys Earth Planet Inter 40:61–179

    Article  Google Scholar 

  • Alshayea NA, Khan K, Abduljauward SN (2000) Effects of confining pressure and temperature on mixed-mode (I–II) fracture toughness of a limestone rock. Int J Rock Mech Min Sci 37:629–643

    Article  Google Scholar 

  • Anna S, Mirosława B, Tomasz J (2013) High temperature versus geomechanical parameters of selected rocks–the present state of research. J Sust Min 12(4):45–51

    Article  Google Scholar 

  • ASTM International (2009) D2990, “Standard test methods for tensile, compressive, and flexural creep and creep-rupture of plastics” annual book of ASTM standards, vol vol. 8.04. ASTM International, West Conshohocken

    Google Scholar 

  • Balme MR, Rocchi V, Jones C, Sammonds PR, Meredith PG, Boon S (2004) Fracture toughness measurements on igneous rocks using a high-pressure, high-temperature rock fracture mechanics cell. J Volcanol Geoth Res 132(2):159–172

    Article  Google Scholar 

  • Brede M (1993) Brittle-to-ductile transition in silicon. Acta Metall Mater 41(1):211–228

    Article  Google Scholar 

  • Byerlee JD (1968) Brittle-ductile transition in rocks. J Geophys Res 73:4741–4750

    Article  Google Scholar 

  • Byerlee JD (1978) Friction of rocks. Pure Appl Geophys 116:615–626

    Article  Google Scholar 

  • Carter NL, Kirby SH (1978) Transient creep and semi brittle behavior of crystalline rocks. Pure appl Geophys 116:807–839

    Article  Google Scholar 

  • CGWB (2010) Ground water scenario Dholpur district western region Jaipur. Ministry of water resources government of India district groundwater brochure

  • Chen LJ, Wu Z, Qin BD (2005) Mechanical characteristics and cracking mechanism of coal roof sandstone under high temperature. J Chongqing Univ 28(5):123–126

    Google Scholar 

  • Chen CJ, Hsieh WD, Hu WC, Lai CM, Lin TH (2010) Experimental investigation and numerical simulation of a furnished office fire. Build Environ 45:2735–2742

    Article  Google Scholar 

  • Chen YL, Ni J, Shao W, Azzam R (2012) Experimental study on the influence of temperature on the mechanical properties of granite under uniaxial compression and fatigue loading. Int J Rock Mech Min Sci 56:62–66

    Google Scholar 

  • Cramer J (1986) Sandstone-hosted uranium deposits in northern Saskatchewan as natural analogs to nuclear fuel waste disposal vaults. Chem Geol 55(3):269–279

    Article  Google Scholar 

  • Darot M, Gueguen Y, Baratin ML (1992) Permeability of thermically cracked granite. Geophys Res Lett 19:869–872

    Article  Google Scholar 

  • Domanski M, Webb J (2007) A review of heat treatment research. Lithic Technol 32:153–194

    Article  Google Scholar 

  • Dong ZX, Shan RL (1999) Study on constitutive properties of rocks under high strainrates. Eng Blast 6(2):5–9

    Google Scholar 

  • Dragon A, Mroz Z (1978) A Continuum model for plastic-brittle behaviour of rock and concrete. Int J Eng Sci 17:121–137

    Article  Google Scholar 

  • Du SJ, Liu H, Zhi HT, Chen H (2004) Testing study on mechanical properties of post-high-temperature granite. Chin J Rock Mech Eng 23(14):2359–2364

    Google Scholar 

  • Dwivedi RD, Goel RK, Prasad VVR, Sinha A (2008) Thermo-mechanical properties of Indian and other granites. Int J Rock Mech Min Sci 45:303–315

    Article  Google Scholar 

  • Gautam PK, Verma AK, Maheshwar S, Singh TN (2015) Thermomechanical analysis of different types of sandstone at elevated temperature. Rock Mech Rock Eng. doi:10.1007/s00603-015-0797-8

    Google Scholar 

  • Ghiorso MS, Carmichael ISE, Moret LK (1979) Inverted high temperature quartz: until cell parameters and properties of the α–β inversion. Contr Min petr 68:307–323

    Article  Google Scholar 

  • Gies H (1983) Studies on clathrasils III: crystal structure of melanophlogopite a natural clathrate compound of silica. Z Krist 164:247–257

    Google Scholar 

  • Hajpal M (1999) Behavior of sandstones of historical monuments under thermal influence. Period Polytech 43(2):207–218

    Google Scholar 

  • Hajpal M (2002) Changes in sandstones due to thermal effect. Unpublished PhD thesis (In Hungarian with English and German abstract), Budapest University of Technology and Economics, Budapest

  • Hajpal M (2002b) Changes in sandstones of historical monuments exposed to fire or high temperature. Fire Technol 38(4):373–382

    Article  Google Scholar 

  • Heueckel T, Peano A, Pellegrint R (1994) A constitutive law for thermo plastic behavior of rocks: an analogy with clays. Surv Geophys 15:643–671

    Article  Google Scholar 

  • Heuze FE (1983) High-temperature mechanical, physical and thermal properties of granitic rocks-a review. Int J Rock Mech Min Sci Geo Mech Abstr 20(1):3–10

    Article  Google Scholar 

  • Hudson JA, Stephansson O, Andersson J (2005) Guidance on numerical modeling of thermo-hydro-mechanical coupled processes for performance assessment of radioactive waste repositories. Int J Rock Mech Min Sci 42(5/6):850–870

    Article  Google Scholar 

  • Hueckel T, Baldi G (1990) Thermo-plasticity of saturated soils and shale’s constitutive equations. J Geotech Eng 116(12):1765–1777

    Article  Google Scholar 

  • Hueckel T, Borsetto M (1990) Thermoplasticity of saturated clays experimental constitutive study. J Geotech Eng 116(12):1778–1798

    Article  Google Scholar 

  • ISRM (1979) Suggested methods for determining the uniaxial compressive strength and deformability of rock materials. Int J Rock Mech Min Sci Geomech Abstr 16:135–140

    Google Scholar 

  • Johnson B, Gangi AF, Handin J (1978) Thermal cracking of rock subject to slow, uniform temperature changes. Proc 19th US Symp Rock Mech 259–267

  • Kachanov M (1992) Effective elastic properties of cracked solids: critical review of some basic concepts. Appl Mech Rev 45(8):304–335

    Article  Google Scholar 

  • Lau JSO, Gorski B, Jackson R (1995) The effects of temperature and water saturation on mechanical properties of lac du bonnet pink granite. 8th International Congress on Rock Mech Tokyo, 1167–1172

  • Liu JR, Qin JS, Wu XD (2001) Experimental study on relation between temperature and rocky permeability. J Univ Petrol China 25(4):51–53

    Google Scholar 

  • Malkowski P, Kaminski P, Krzysztof S (2012) Impact of Heating of carboniferous rocks on their mechanical parameters. AGH J Min Geoeng 36(1):231–242

    Google Scholar 

  • Mao XB, Zhang LY, Li TZ, Liu HS (2009) Properties of failure mode and thermal damage for limestone at high temperature. Min Sci Technol 19:290–294

    Google Scholar 

  • Mao X, Zhang L, Liu R, Dan M (2014) Mechanical and thermal damage properties of sandstone at high temperatures. EJGE 19:3137–3150

    Google Scholar 

  • Modaressi H, Lyesse L (1997) A thermo-viscoplastic constitutive model for clays. Int J Numer Anal Methods Geomech 21:313–335

    Article  Google Scholar 

  • Qiu-hua R, Zhi W, Hai-feng X, Qiang X (2007) Experimental study of mechanical properties of sandstone at high temperatures. J Cent S Univ Tech 14(1):478–483

    Google Scholar 

  • Ranjith PG, Daniel RV, Chen BJ, Perera MSA (2012) Transformation plasticity and the effect of temperature on the mechanical behavior of Hawkesbury sandstone at atmospheric pressure. Eng Geol 15:120–127

    Google Scholar 

  • Schmidt P, Masse S, Laurent G, Slodczyk A, Le Bourhis E, Perrenoud C, Fröhlich F (2012) Crystallographic and structural transformations of sedimentary chalcedony in flint upon heat treatment. J Archaeol Sci 39(1):135–144

    Article  Google Scholar 

  • Shi L, Jinyu X (2014) Investigation of impact compressive mechanical properties of sandstone after as well as under high temperature. High Temp Mat Proc 33(6):489–591

    Google Scholar 

  • Tian H, Kempka T, Xu N-X, Ziegler M (2012) Physical properties of sandstones after high temperature treatment. Rock Mech Rock Eng 45(6):1113–1117

    Article  Google Scholar 

  • Verma AK, Bajpai RK, Singh TN, Narayan PK, Dutt Avi (2010) 3D instability analysis of an underground geological repository—an Indian case study. Arab J Geosci 4(7):1173–1188

    Google Scholar 

  • Verma AK, Saini MS, Singh TN, Dutt Avi, Bajpai RK (2013) Effect of excavation stages on stress and pore pressure changes for an underground nuclear repository. Arab J Geosci 6(3):635–645

    Article  Google Scholar 

  • Vishal V, Pradhan SP, Singh TN (2011) Tensile strength of rock under elevated temperatures. Geotech Geol Eng 29(6):1127–1133

    Article  Google Scholar 

  • Wu Z, Qin BD, Chen LJ, Luo YJ (2005) Experimental study on mechanical character of sandstone of the upper plank of coal bed under high temperature. Chin J Rock Mech Eng 24(11):1863–1867

    Google Scholar 

  • Xi DY (1998) Effects of temperature on modulus and wave velocity of rock. Chin J Rock Mech Eng 11(17):802–807

    Google Scholar 

  • Xu XL, Kang ZX, Ji M, Ge WX, Chen J (2009) Research of microcosmic mechanism of brittle-plastic transition for granite under high temperature. Proc Earth Planet Sci 1:432–437

    Article  Google Scholar 

  • Yang LT, Ekneligoda TC, Wanatowski D, Marshall AM, Stace LR (2015) Experimental study on the mechanical properties of sandstone at high temperature. 7th International Conference on Mining Science and Technology (ICMST 2015), Xuzhou

  • Yavuz H, Demirdag S, Caran S (2010) Thermal effect on the physical properties of carbonate rocks. Int J Rock Mech Min Sci 47:94–103

    Article  Google Scholar 

  • Zhang LY, Mao XB, Lu WT (2007) Experimental research on mechanical properties of sandstone at high temperature. J Min Saf Eng 24(3):293–297

    Google Scholar 

  • Zhang L, Mao X, Liu R, Guo X, Ma D (2014) The mechanical properties of mudstone at high temperatures: an experimental study. Rock Mech Rock Eng 47:1479–1484

    Article  Google Scholar 

  • Zhou H, Hu D, Zhang F, Shao J (2011) A thermoplastic/viscoplastic damage model for geomaterials. Acta Mech Solida Sin 24(3):195–208

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Verma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautam, P.K., Verma, A.K., Jha, M.K. et al. Study of Strain Rate and Thermal Damage of Dholpur Sandstone at Elevated Temperature. Rock Mech Rock Eng 49, 3805–3815 (2016). https://doi.org/10.1007/s00603-016-0965-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-016-0965-5

Keywords

Navigation