Skip to main content
Log in

Characterization of wrench tectonics from dating of syn- to post-magmatism in the north-western French Massif Central

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

This work establishes the relative timing of pluton emplacement and regional deformation from new dating and structural data. (1) Monazite and (2) zircon dating show Tournaisian ages for the Guéret granites [Aulon granite 352 ± 5 Ma (1), 351 ± 5 Ma (2) and Villatange tonalite 353 ± 6 Ma (1)] and Viseo-Namurian ages for the north Millevaches granites [Chavanat granite 336 ± 4 Ma (1), Goutelle granite 336 ± 3 Ma (1), Royère granite 323 ± 2 Ma (1) and 328 ± 6 Ma (2), Courcelles granite 318 ± 3 Ma (1)]. The Guéret and Millevaches granites are separated by the N110 Arrènes–la Courtine Shear Zone (ACSZ), composed from West to East by the Arrènes Fault (AF), the North Millevaches Shear Zone (NMSZ) and the la Courtine Shear Zone (CSZ), respectively. Tournaisian Guéret granites experienced a non-coaxial dextral shearing (NMSZ) recorded by the Villatange granite while the Aulon granite (Guéret granite) cuts across this dextral shear zone which thus stopped shearing during Tournaisian time. Visean to Namurian Millevaches granites experienced a coaxial deformation. Therefore, low displacements along the NMSZ and the CSZ occurred at the emplacement time of Chavanat and Pontarion-Royère granites (336–323 Ma). The structural analyses of Goutelle granite emphasizes a deformation related to the dextral Creuse Fault System (CFS) oriented N150–N160. From 360 to 300 Ma, the Z strain axis is always horizontal inferring a wrench setting for these granite emplacements. During this tectonic evolution, the Argentat zone acted as a minor normal fault and is related with a local Middle Visean (340–335 Ma) syn-orogenic extension on the western border of the Millevaches massif.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allmendinger RW, Marret RA, Cladoulos T (1989) Fault kinematics: a program for analysing fault slip data for Macintosh computer

  • Arène J, Autran A, Labernardière H, Burnol L (1972) Notice explicative de la carte géologique de Bourganeuf (nο 665) au 1/50.000. Éditions BRGM, Orléans

  • Bazot G (1970) L’association magmatique dinantienne des Combrailles dans le Nord du Massif Central français, Thèse 3ème Cycle, p 178

  • Berthier F, Duthou JL, Roques M (1979) Datation géochronologique Rb/Sr sur roches totales du granite de Guéret (Massif Central). Age fini-dévonien de mise en place de l’un de ses faciès types. Bull BRGM 2:60–71

    Google Scholar 

  • Bitri A, Truffert C, Bellot J-P, Bouchot V, Ledru P, Milesi J-P, Roig J-Y (1999) Imagery of crustal-scale As–Au–Sb hydrothermal palaeofields in the Variscan belt: vertical seismic reflection (GeoFrance 3D: French Massif Central): Imagerie des paleochamps hydrothermaux As–Au–Sb d’echelle crustale et des pieges associes dans la chaine varisque: sismique reflexion verticale (GeoFrance3D: Massif central francais). C R Acad Sci 329:771–777

    Google Scholar 

  • Burg J-P, Matte P (1978) A cross section through the French Massif Central and the scope of its variscan geodynamic evolution. Z Dtsch Geol Ges 129:429–460

    Google Scholar 

  • Burg JP, Van den Driessche J, Brun JP (1994) Syn- to post-thickening extension in the Variscan Belt of Western Europe: modes and structural consequences. Géol Fr 3:33–51

    Google Scholar 

  • Cartannaz C, Rolin P, Le Métour J, Fabbri O (2006a) Fammenian-Tournaisian dextral ductile shear in the French Variscan belt. C R Geosci (in press)

  • Cartannaz C, Rolin P, Sonnet R, Emonin Y, Juillerat M, Thiery V, Deprez J, Binetruy JC, Montaz N, Rot J (2006b) Carte géologique d’Aubusson (nο 667) au 1/50.000. Éditions BRGM, Orléans (in press)

  • Chantraine J, Autran A, Cavelier C (1996) Carte géologique de France à 1/1.000.000. Éditions BRGM, Orléans

  • Cocherie A, Albarède F (2001) An improved U–Th–Pb age calculation for electron microprobe dating of monazite. Geochim Cosmochim Acta 65:4509–4522

    Article  Google Scholar 

  • Cocherie A, Legendre O (2006) Potential minerals for determining U–Th–Pb chemical age using electron microprobe. Lithos (in press)

  • Cocherie A, Legendre O, Peucat JJ, Kouamelan AN (1998) Geochronology of polygenetic monazites constrained by in situ electron microprobe Th–U–total Pb determination: implications for lead behaviour in monazite. Geochim Cosmochim Acta 62:2475–2497

    Article  Google Scholar 

  • Cocherie A, Guerrot C, Fanning CM, Genter A (2004) Datation U-Pb des deux faciès du granite de Soultz (Fossé rhénan, France). C R Geosci 336:775–787

    Article  Google Scholar 

  • Cocherie A, Be Mezème E, Legendre O, Fanning CM, Faure M, Rossi Ph (2005a) Electron-microprobe dating as a tool for determining the closure of Th–U–Pb systems in migmatitic monazites. Am Mineral 90:607–618

    Article  Google Scholar 

  • Cocherie A, Rossi Ph, Fanning CM, Guerrot C (2005b) Comparative use of TIMS and SHRIMP for U–Pb zircon dating of A-type granites and mafic tholeiitic layered complexes and dykes from the Corsica Batholith (France). Lithos 82:185–219

    Article  Google Scholar 

  • Compston W, Williams IS, Kirschvink JL, Zhang Z, Ma G (1992) Zircon U–Pb ages for Early Cambrian time scale. J Geol Soc Lond 149:171–184

    Google Scholar 

  • Costa S, Maluski H, Lardeau JM (1993) 40Ar–39Ar chronology of Variscan tectonometamorphic events in an exhumed crustal nappe: the Monts du Lyonnais complex (MassifCentral, France). Chem Geol 105:339–359

    Article  Google Scholar 

  • Cuney M, Alexandrov P, Le Carlier de Veslud C, Cheilletz A, Raimbault L, Ruffet G, Scaillet S (2002) The timing of W-Sn-rare metals mineral deposit formation in the Western Variscan chain in their orogenic setting: the case of the Limousin area (Massif Central, France). Geol Soc Lond 204:213–228

    Article  Google Scholar 

  • Downes H, Shaw A, Williamson BJ, Thirlwall MF (1997) Erratum to “Sr, Nd and Pb isotopic evidence for the lower crustal origin of Hercynian granodiorites and monzogranites, Massif Central, France” [Chem. Geol. 136 (1997) 99–122]. Chem Geol 140:289

    Article  Google Scholar 

  • Dumas E, Faure M, Pons J (1990) L’architecture des plutons leucogranitiques du plateau d’Aigurande et l’amincissement crustal tardi-varisque. C R Acad Sci II:1533–1539

    Google Scholar 

  • Duthou JL (1984) Âge dévonien supérieur (Rb/Sr) des gneiss à cordiérite de la carrière du Puy-du-Roi à Aubusson (Creuse). Conséquences. 10e Réun. ann. sci. Terre, Bordeaux

  • Faure M (1995) Late orogenic carboniferous extensions in the Variscan French Massif central. Tectonics 14:132–153

    Article  Google Scholar 

  • Faure M, Monié P, Pin C, Maluski H, Leloix C (2002) Late Visean thermal event in the northern part of the French Massif Central: new 40Ar/39Ar and Rb–Sr isotopic constraints on the Hercynian syn-orogenic extension. Int J Earth Sci (Geol Rundsch) 91:53–75

    Article  Google Scholar 

  • Floc’h JP (1983) La série métamorphique du Limousin central. Thèse d’état, p 445

  • Forestier FH (1965) Carte géologique d’Aubusson au 1/80.000 (No 156, 2ème édition). BRGM

  • Gébelin A (2004) Déformation et mise en place des granites (360–300 Ma) dans un segment de la Chaîne Varisque (Plateau de Millevaches, Massif Central), p 235

  • Gumiaux C, Gapais D, Brun JP, Chantraine J, Ruffet G (2004) Tectonic history of the Variscan Armorican Shear belt (Brittany, France). Geodin Acta 17:289–307

    Article  Google Scholar 

  • Holliger Ph, Cuney M, Friedrich M, Turpin L (1986) Age carbonifère de l’unité de Brame du complexe granitique peralumineux de St.-Sylvestre (N.O. Massif central) défini par les données isotopiques U–Pb sur zircon et monazite. C R Acad Sci 303:1309–1314

    Google Scholar 

  • Hottin AM, Marchand G, Maurin G, Debacque G, Constans J, Turland M, Freytet P (1991) Notice explicative de la carte géologique d’Evaux-Les-Bains au 1/50.000, nο 643. Éditions BRGM, Orléans

  • Hutton DHW, Reavy RJ (1992) Strike-slip tectonics and granite petrogenesis. Tectonics 11:960–967

    Google Scholar 

  • Labernardière H (1970) La tectonique cassante du socle hercynien dans la région de Bourganeuf (Nord-Ouest du Massif Central français). Bull BRGM 2:29–33

    Google Scholar 

  • Lagarde J-L, Capdevila R, Fourcade S (1992) Granites et collision continentale: l’exemple des granitoïdes carbonifères dans la chaîne hercynienne ouest-européenne. Bull Soc Géol Fr 5

  • Lameyre J (1982) Contribution à la géologie du Limousin: arguments pour les fenêtres ouvertes dans un grand charriage par des diapirs leucogranitiques. C R Acad Sci 294(II):1237–1241

    Google Scholar 

  • Laurent O (1988) Le sondage de Créchiat-les Sibieux, apports à la connaissance géologique de l’ouest du Massif Central français, p 335

  • Ledru P, Lardeaux JM, Santallier D, Autran A, Quenardel JM, Floc’h JP, Lerouge G, Maillet N, Marchand J, Ploquin A (1989) Où sont les nappes dans le Massif central français? Bull Soc Géol Fr 8:605–618

    Google Scholar 

  • Ludwig KR (1999) ISOPLOT/EX a geochronological toolkit for Microsoft Excel, version 2. US Geol Survey Open-file Rept 1-42

  • Matte P (1986) Tectonics and plate tectonics model for the variscan belt of Europe. Tectonophysics 126:329–374

    Article  Google Scholar 

  • Paces JB, Miller JD (1993) Precise U–Pb ages of Duluth complex and related mafic intrusions, Northern Minnesota: geochronological insight to physical, petrogenic, and tectono-magmatic processes associated with the 1.1 Ga midcontinent rift system. J Geophys Res 98:13997–14013

    Article  Google Scholar 

  • Pommier A, Cocherie A, Legendre O (2002) EPMA dating user’s manual: age calculation from electron probe microanalyser measurements of U–Th–Pb. BRGM, p 9

  • Pupin JP (1980) Zircon and granite petrology. Contrib Mineral Petrol 73:207–220

    Article  Google Scholar 

  • Ranchin G (1971) La géochimie de l’uranium et la différenciation granitique dans la province uranifère du nord-Limousin, mém. 19, p 394

  • Razafimahefa N (1987) Granites et leucogranites alumineux du Nord-Est du Massif de Millevaches (Massif Central français): pétrologie, géochimie et synthèse cartographique, I64

  • Roig JY, Faure M, Maluski H (2002) Surimposed tectonic and hydrothermal events during the late-orogenic, extension in the Western French Massif Central: a structural and 40Ar/39Ar study. Terra Nova 14:25–32

    Article  Google Scholar 

  • Rolin P, Colchen M (2001) Les cisaillements hercyniens de la Vendée au Limousin. Geol Fr 1–2:87–116

    Google Scholar 

  • Rolin P, Cartannaz C, Henry P, Rossy M, Cocherie A, Salen F, Delwaulle B (2006) Notice explicative de la carte géologique de St.-Sulpice-les-Champs (nο 666) au 1/50.000. Éditions BRGM, Orléans (in press)

  • Scaillet S, Cuney M, le Carlier de Veslud C, Cheilletz A, Royer JJ (1996) Cooling pattern and mineralization history of the Saint Sylvestre and western Marche leucogranite pluton, French Massif Central: II. Thermal modelling and implications for the mechanisms of uranium mineralization. Geochim Cosmochim Acta 60:4673–4688

    Article  Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  • Stussi JM, Cuney M (1993) Modèles d’évolution géochimique de granitoïdes peralumineux. L’exemple du complexe plutonique varisque du Millevaches (Massif Central français). Bull Soc Géol Fr 164:585–596

    Google Scholar 

  • Suzuki K, Adachi M (1991) Precambrian provenance and Silurian metamorphism of the Tsubonosawa paragneiss in the South Kitakami terrane, Northeast Japan, revealed by the chemical Th–U–total Pb isochron ages of monazite, zircon and xenotime. Geochem J 25:357–376

    Google Scholar 

  • Tera F, Wasserburg GJ (1972) U–Th–Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth Planet Sci Lett 14:281–304

    Article  Google Scholar 

  • Vauchelle L (1988) L’extrémité occidentale du massif de Guéret (Massif Central français), p 397

  • Vauchelle L, Laurent O, Lameyre J, Dupis A, Robin G (1988) Le sondage de Créchat-les Sibieux (Ouest Guéret) présence d’une brèche tectonique entre le granite de Guéret et sa semelle de gneiss d’Aubusson. 12e R.S.T., Lille. Soc. Géol. Fr. Ed. 131

  • Wendt I, Carl C (1991) The statistical distribution of the mean squared weighted deviation. Chem Geol 86:275–285

    Google Scholar 

  • Williams IS (1998) U–Th–Pb geochronology by ion microprobe. Rev Econ Geol 7:1–35

    Google Scholar 

Download references

Acknowledgments

This work was supported by the mapping program of BRGM. The constructive comments by D. Gapais helped us to clarify our understanding of the Variscan tectonic frame. O. Fabbri is thanked for his remarks on the manuscript and S. Andre for Pontarion and Goutelle drawing. Prof. Van den Driessche and an anonymous reviewer are thanked for their helpful reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Cartannaz.

Appendices

Appendix 1: Analytical procedure

EPMA dating

The electron probe microanalyzer (EPMA) is becoming increasingly popular for determining Th–U–Pbtot ages on monazite because it provides a true in situ high spatial resolution method and because it is a non-destructive method. The monazite mounted in resin and polished to obtain cross-sections of the grain was analysed using a Cameca SX 50 electron microprobe. The analytical procedure for monazite was detailed in Cocherie et al. (1998, 2005a). The interference of YLγ on PbMα is subtracted offline by applying a coefficient of interference to the value of Y. The different interference corrections have been validated by dating several monazite samples using this method and conventional isotopic methods (Cocherie et al. 1998). An acceleration voltage of 20 kV was considered while a beam current of 200 nA is now applied. According to this procedure, the calculated detection limits (2σ) are 110 ppm for Pb, 105 ppm for U and 130 ppm for Th, whereupon the absolute error is taken as 110, 105 and 130 ppm, respectively. A systematic relative error of 2% is considered for Th (whose concentration is generally above 6,500 ppm) and also for U concentrations above 5,250 ppm in order to avoid an unrealistic low error for U-enriched grains (Cocherie and Legendre 2006). For monazite the standards were galena (PbS) for Pb, uraninite (UO2) for U, thorite (ThO2) for Th, endmember synthetic phosphates (XPO4) for each rare-earth element (REE) and Y, apatite for P and andradite for Si and Ca.

If two or more homogeneous age domains are separated by a gap that is lower than the analytical error on each individual spot analysis age, these can be identified by suitable isochron diagrams (Cocherie and Albarède 2001; Cocherie et al. 1998; Suzuki and Adachi 1991). A recent study shows how to provide precise ages of ± 5 to 10 Ma (2σ) using the most suitable isochron diagram according to the geochemistry of the studied grains (Cocherie et al. 2005a).

With an obvious need for a program to simplify individual age and isochron mean-age calculations, we created EPMA dating, a Microsoft Excel add-in program for determining U–Th–Pbtot. ages from EPMA measurements (Pommier et al. 2002). All the parameters needed to calculate mean and intercept ages are computed, ready to be plotted using the ISOPLOT program (Ludwig 1999) in order to obtain statistics from suitable diagrams. Finally, EPMA dating produces (1) the age and error from the slope of the Pb versus Th* diagram, (2) the U–Th–Pb age at the centroid of the best-fit line and (3) the Th–Pb age (intercept with Th/Pb axis) and the U–Pb age (intercept with U/Pb axis) from the Th/Pb versus U/Pb diagram. All calculations were done at 2σ level. A special care was taken on the MSWD (mean squared weighted deviation) which must be below 1 + 2/(2/f)0.5 (f: degree of freedom = number of analyses − number of dated events) in order to validate age calculation (Wendt and Carl 1991) for a single age population.

The three starting assumptions are: (1) common Pb is negligible as compared to the amount of thorogenic and uranogenic lead; (2) no radiogenic Pb loss has occurred since system closure; (3) a single age is involved at the size level of each individual spot analysis. After comparison with conventional isotopic U–Pb age determinations, it is now accepted that EPMA resolution allows to avoid inclusions and altered domains that could potentially contain common Pb. Systematic BSE study was performed to investigate monazite micro-texture for all mounted grains.

SHRIMP dating

Zircons were dated using the ion microprobe (SHRIMP II) of the Australian National University, Canberra, according to the procedure described by Williams (1998). The areas analysed (∼25 μm) were selected after studying images of the grains obtained by cathodoluminescence and by transmitted light microphotography. The determination of the 238U/206Pb ratio necessitated the external calibration of the measurements with the aid of a particularly homogeneous standard zircon of known composition: the Duluth Gabbro (Paces and Miller 1993). In general, areas very rich in U (> 2,000–3,000 ppm) were not selected in order to avoid, first, moving away from the area of validity of the U–Pb calibration line and, secondly, the risk of losses of radiogenic Pb, in relation to the metamictisation. For the relatively recent zircons (< 1,000 Ma), the imprecision of the 206Pb/204Pb ratio becomes critical; one then uses the Concordia diagram of Tera and Wasserburg (1972), modified by Compston et al. (1992), in which one plots the 207Pb/206Pb and 238U/206Pb ratios, not corrected for common Pb. In the absence of common Pb, the analyses of areas not affected by thermal events subsequent to the crystallisation of the zircon or by inherited cores are spread along this Concordia (Williams 1998). Although the variable quantities of common Pb adversely affect the values of the two ratios, these kinds of points form a straight line passing through the composition of common Pb (207Pb/206Pb) at the estimated age of the system given, in a first approximation, by the average 238U/206Pb ages stemming from the concordant analyses. The extrapolation of this line on the Concordia defined the sought age. This is what is called a correction of common Pb by the 207Pb method and not by the 204Pb method, as in the case of the conventional diagram. Using this correction method, one calculates the 206Pb*/238U (Pb* = radiogenic Pb) ratios for each point.

Whatever analytical approach was used, all the calculations were made at 2σ (95% confidence limit) using the ISOPLOT program (version 2) of Ludwig (1999). On the other hand, in the case of the data obtained using the SHRIMP, the uncertainties are given at 1σ in the corresponding table and, in the same way, the error ellipses are given at 1σ in order to make the figures easier to read.

Appendix 2: Sample location

Sample

X Lambert 2

Y Lambert 2

Locality

Rock type

CJ 51

554.95

2,116.76

Villatange

Granodiorite

LB 92

552.21

2,119.63

Aulon

Leucomonzogranite

LA 48

571.38

2,105.92

Chavanat

Two-mica granite

CJ 41

582.42

2,101.76

Goutelle

Leucogranite

CJ 47

569.45

2,102.36

Royère

Garnet, cordierite granite

CJ 53

576.38

2,105.20

Courcelles

Leucogranite

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cartannaz, C., Rolin, P., Cocherie, A. et al. Characterization of wrench tectonics from dating of syn- to post-magmatism in the north-western French Massif Central. Int J Earth Sci (Geol Rundsch) 96, 271–287 (2007). https://doi.org/10.1007/s00531-006-0101-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-006-0101-y

Keywords

Navigation